The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


In this article, Meshless Local Petrov- Galerkin (MLPG) method is used to solve the nonlinear and transient one- dimensional heat transfer equation of a fin with the power- law temperature- dependent heat transfer coefficient. Moving least square approximants are used to approximate the unknown function of temperature T(x) with Th (x). These approximants are constructed by using a linear basis, a weight function and a set of non- constant coefficients. Essential boundary conditions are enforced by direct method of interpolation and Penalty Method (PM) respectively. Temperature variation along the fin length over the different time range till the attainment of steady state has been demonstrated for the convective and insulated tip conditions.

Keywords

Convective Tip, Direct Method, Fins, Insulated Tip, Meshless Local Petrov-Galerkin (MLPG) Method, Penalty method, Transient
User