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Abstract
In this article, Meshless Local Petrov- Galerkin (MLPG) method is used to solve the nonlinear and transient one- dimensional 
heat transfer equation of a fin with the power- law temperature- dependent heat transfer coefficient. Moving least square 
approximants are used to approximate the unknown function of temperature T(x) with Th (x). These approximants are 
constructed by using a linear basis, a weight function and a set of non- constant coefficients. Essential boundary conditions 
are enforced by direct method of interpolation and Penalty Method (PM) respectively. Temperature variation along the 
fin length over the different time range till the attainment of steady state has been demonstrated for the convective and 
insulated tip conditions.

1. Introduction
Meshless methods, as alternative numerical approaches 
to eliminate the well-known drawbacks in the finite ele-
ment and boundary element method, have attracted 
much attention in the past decade, due to their flexibility 
and potential in negating the need for the human-labor 
intensive process of constructing geometric meshes in a 
domain. The main objective of the meshless methods is 
to get rid of, or at least alleviate the difficulty of, mesh-
ing and remeshing the entire structure; by only adding 
or deleting nodes in the entire structure, instead. Various 
methods belonging to this family are the smooth par-
ticle hydrodynamics, the diffuse element method, the 
reproducing kernel particle method, the method of finite 
spheres, the local boundary integral method, the element 
free Galerkin method and meshless local Petrov- Galerkin 
method (MLPG).

Among all these methods, the MLPG method has 
been used successfully to solve variety of solid mechanics, 
heat transfer and fluid flow problems.

MLPG method was developed by Atluri and Zhu1,2. 
Unlike FEM and most other meshfree methods, MLPG 
method operates on local weak form and performs inte-
gration over overlapping simple local domains. This has 
removed the need of mesh at any stage of analysis. Hence, 
it is a truly meshfree method.  It can be concluded that 
MLPG: (a) has a very high rate of convergence, (b) does 
not need any post processing technique, and (c) does not 
exhibit any volumetric locking. This method works on 
Petrov-Galerkin formulation i.e. trial and test functions 
are selected from different spaces which provides a large 
number of possible combinations to formulate MLPG 
method. Authors3 have shown different variants of MLPG 
method in their work and presented the method as an 
able alternative to FEM. 

Many researchers have used MLPG method to solve 
variety of heat transfer problems, including steady state 
and transient linear and nonlinear problems in regular as 
well as irregular domains4-6.  

Fins are extended surfaces which can provide a con-
siderable available area for heat transfer between a solid 
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and a fluid. For proper prediction and control of the 
fin performance, it is necessary to know the dynamic 
response of temperature distribution when an unpredict-
able or expected change occurs. Analytical solution are 
particular important and useful for they may be used in 
an on line computation. Transient and steady state analy-
sis of fins have been addressed by meshless Element Free 
Galerkin (EFG)7 method and many other numerical 
methods8-10. 

Heat transfer problems, in practical are transient 
and nonlinear. These nonlinear problems have been 
approximated by different numerical methods including 
differential transformation method11-13, homotopy per-
turbation method14 and the classical Lie point symmetry 
method15 etc.  Galerkin’s method of weighted residual has 
been employed to solve thermal analysis of longitudinal 
fins with temperature dependent properties and internal 
heat generation16. It has been revealed that the results 
obtained in this analysis serve as basis for comparison 
of any other method of analysis of the problem and they 
also provide a platform for improvement in fin design of 
fin in heat transfer equipment. Convective-radiative fin 
with temperature dependent properties have been dem-
onstrated by collocation spectral method17. The effect of 
temperature dependent properties such as thermal con-
ductivity, surface emissivity, heat transfer coefficient, 
convection-conduction parameter and radiation- con-
duction parameter on the fin temperature distribution 
and efficiency have been discussed. 

To the best knowledge of the authors’ MLPG method 
has not been applied for the analysis of nonlinear heat 
conduction through fins. 

Nonlinear heat conduction covers the problems of 
temperature dependent material properties or temperature 
dependent boundary conditions. In view of the practical 
importance of nonlinear heat conduction problems, par-
ticularly in the fins, we attempt their numerical simulation 
using MLPG method in the present work. The MLPG 
method has been employed to obtain discrete equations 
for one- dimensional nonlinear transient heat transfer 
through convective and insulated tip fins with the help of 
direct method and penalty method of interpolation.

1.1 The Meshless Local Petrov- Galerkin 
Method 
The MLPG method operates on Petrov-Galerkin formu-
lation i.e. it picks up test and trial functions from different 

function spaces. The original formulation1,2 has subse-
quently evolved in various versions either by changing the 
meshfree approximation scheme or by selecting a new test 
function. Hence, the MLPG method provides a rational 
basis for constructing meshfree methods with a greater 
degree of flexibility. The discretization of the governing 
equation by the MLPG method requires moving least 
square approximants which are made up of two compo-
nents of a weight associated with each node, a monomial 
basis and a set of non constant coefficients.

1.1.1 The Moving Least Square Approximants
The unknown function T (x) is approximated by moving 
least- square approximants Th (x). In one dimensions, for 
linear basis Th (x) can be written as:

( ) ( ) ( ) ( ) ( )
1

mh TT p aj jj
= ≡∑

=
x x x p x a x

 		      
(1)

Where pT(x) = (p1 (x), p2 (x),……, pm (x)) is a complete 
monomial basis and m is the number of terms in the basis.

For example, in 1-D space the basis can be chosen as:
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The unknown coefficients aj(x) at any given point are 

determined by minimizing the functional J
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Where n is the number of nodes in the neighbour-
hood of x for which the weight function ( ) 0w x xI− ≠ , 

and TI is the nodal parameter of T at x= xI. The stationar-
ity of J in equation (2) with respect to aj (x) leads to the 
following set of linear equations: 

1( ) T−=a x A (x)B(x)  			       (3)
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[ ( ) ,......., ( ) ]I Iw w n n= − −B(x) x x p(x ) x x p(x )               (5)

[ , , ... ]1 2T T T Tn=  				         (6)

By substituting Eq. (3) in Eq. (1), the MLS approxi-
mants can be defined as
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( )( ) ( )
1

x
nhT x T x TI Ii

= Φ =Φ∑
=  		      (7)

Where meshless shape function ΦI(x) is defined as: 

( )1( ) ( )
1

m
p jI jIj

−Φ = ∑
=

x x A (x)B(x)  = pTA-1BI  (8)

The derivatives of shape function is given by:
1 1 1 1) ( ) ( ), , , ,( T T T TA B p A B p A B p A Bix I x x I x I I xp − − − −= + +Φ =   	     (9)

1.1.2 Weight Function
The weight function w(x- xi) is non-zero over a small 
neighbourhood of xI called the domain of influence of 
node I. The choice of weight function w (x- xi) affects the 
resulting approximation Th (xI), therefore the selection of 
appropriate weight function is essential. In this article the 
fourth order spline weight function is used. It is repre-
sented by

2 3 41 6 8 3 if  0 1
( )

0 if  1
d d d d

w
d

 − + − ≤ ≤− = 
>

ix x   	    (10)

Where d = ||x-xI|| is the distance between two points.

2. The Discrete Equation
Let us consider the heat transfer equation with power-
law temperature- dependent heat transfer coefficient (h), 
linear thermal conductivity (k), density (ρ) and specific 
heat (c). The perimeter and area of the cross-section of 
the fin are Pr and Ac, respectively. Heat is not generated in 
the solid then the governing differential equation for such 
condition in a 1-D domain Ω is given by

( )
2

2 ( ) a
T P Tk h T T T c

x A t
ρ∂ ∂ − − = ∂ ∂   		     (11)

Initial and boundary conditions:
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where 1 2 3Γ = Γ ∪Γ ∪Γ  is the boundary of global 

domain Ω, ( )Tq k
n

∂
=

∂
, T  is the specified temperature on 

essential boundary, q  is the given heat flux at the natural 

boundary, n is the outward unit normal to the boundary, 
h is convective heat transfer coefficient and Ta is the ambi-
ent temperature. 

2.1 MLPG Formulation
MLPG method is based on local weak form. Weighted 
residual formulation for Eq. (1) in local domain QΩ  can 
be expressed as

( )
2

2 ( ) 0
Q

a
T P Tv k h T T T c d
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ρ
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Where, v is the test function. Using divergence theo-
rem, Eq. (4) yields the desired weak form given by

Q
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Where QΓ is the boundary of the local domain . 

In case of 1-D problem, boundary integrals turn to be a 
point value on boundaries. Taking advantage of MLPG 
method’s flexibility, the test function v is selected such 
that it vanishes at the boundary of local domain. Hence, 
boundary integral remains non-zero only when local 
domain intersects the global boundary. Therefore, Eq. (5) 
can be written as follows:
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Where 1 1 2 2 3 3,    and Q Q Q Q Q QΓ = Γ ∩Γ Γ = Γ ∩Γ Γ = Γ ∩Γ .
The unknown function, T, at any instant of time t, is 

approximated by MLS scheme as follows:

1
( )

sn

i i
i

T x T T
=

= Φ = Φ∑
  				       (17)

where iΦ is the vector of meshfree shape functions iΦ , 
T represents the vector of nodal parameters Ti at time t 
and ns is the number of nodes in the support domain at 
point x. Essential boundary condition is imposed by the 
method of direct interpolation. Substituting the approxi-
mation (17) in Eq. (16) and performing integration over 
all local domains corresponding to all field nodes, the 
semi-discrete system can be obtained as follows:

+ =CT KT F  					       (18)

Where the typical matrix elements if essential bound-
ary condition is imposed with the: 



Indian Journal of Science and TechnologyVol 10 (31) | August 2017 | www.indjst.org 4

Nonlinear and Transient Heat Transfer in the Fin by a Truly Meshless Method

Direct Method
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Penalty Method 
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Where α is the penalty parameter.

2.2 Time-Stepping Algorithm and Handling 
Nonlinearity
Spatial discretization of governing partial differential 
equation (11) results in a system of semi-discrete ordi-
nary differential equations. We use two- level θ method 
for temporal discretization. It can vary between explicit 
and implicit strategies and results in the algebraic system

1[ ] [ ( 1) ]n nt t tθ θ++ ∆ = + − ∆ + ∆C K T C K T F  (25)

Where t∆ is the time step and n denotes the time level 

(i.e. tn= n t∆  if uniform time step is employed).
An iterative predictor-corrector scheme is used to 

handle nonlinearity in current work is as follows:

Predictor:
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Where p = 0, 1, 2, 3…up to convergence and
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3. Numerical Results and 
Discussions
Consider a sample problem of one- dimensional fin as 
mentioned in the Figure 1.

Figure 1. Schematic of cylindrical fin.

The different parameters used for the transient analysis 
of the model, shown in Figure 1 are tabulated in Table 1.

Table 1. Thermo- Geometric Parameters of Fin18

Sl. 
No.

Parameters Value of 
Parameters

1 Fin Diameter (d) 2 cm = 0.02 m

2 Fin Length (L) 10 cm = 0.10 m

3 Fin Perimeter (Pr) =πd 0.0628 m

4 Specific heat (C) 0.48 kJ/kg.0C

5 Density of the material (ρ) 7800 kg/m3

6 Cross- sectional area (Ac)= 
½πr2

1.57 x 10-4 m2

7 Thermal conductivity (k) 12 W/m.0C

8 Heat transfer coefficient (h) 9.0 ∆T0.175 W/
m2.0C

9 Surrounding temperature (Ta) 300C
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10 Base temperature (Tb) 2000C
11 Initial temperature (Tinit) 2000C

12 Time step (∆t) 10 sec

Table 2. Performance parameters of fin

Sl. 
No.

Parameters Value of 
Parameters

1 No. of nodes taken along the fin 
length 

21

2 Extent of quadrature domain 
(αQ) and support domain (αS)

1.66 and 2.50

4 Theta (θ) 1

5 No. of iterations 10

The solutions for the proposed cases are depicted 
in Figures 2-5. It can be observed that the temperature 
decreases with the increase in time from 500 sec to 2500 
sec. for both the tip conditions- convective and insulated 
the temperature at the tip seems to be decreased with time. 
The temperature variation trend approaches towards the 
steady state as the time advances.

Table 3. Results of heat transfer in the convective fin by direct method of 
interpolation

Node Location (m) 500 sec 1000 sec 1500 sec 2000 sec 2500 sec Steady state
0.000 200.00 200.00 200.00 200.00 200.00 200.00
0.025 129.09 118.86 116.84 116.41 116.32 116.30
0.050 102.07 84.41 80.84 80.10 79.94 79.90
0.075 90.01 68.30 63.85 62.91 62.71 62.66
0.100 84.06 62.66 58.23 57.30 57.10 57.05

Table 4. Results of heat transfer in the insulated fin by direct method of interpolation

Node Location (m) 500 sec 1000 sec 1500 sec 2000 sec 2500 sec Steady state
0.000 200.00 200.00 200.00 200.00 200.00 200.00
0.025 129.45 119.16 117.04 116.58 116.48 116.45
0.050 103.00 85.08 81.31 80.49 80.31 80.26
0.075 91.95 69.53 64.74 63.69 63.46 63.39
0.100 87.60 64.76 59.84 58.76 58.53 58.46

Table 5. Results of heat transfer in the convective fin by penalty method of 
interpolation

Node Location (m) 500 sec 1000 sec 1500 sec 2000 sec 2500 sec Steady state
0 200.00 200.00 200.00 200.00 200.00 200.00
0.025 133.07 123.81 122.02 121.66 121.58 121.57
0.050 103.68 86.87 83.57 82.90 82.76 82.73
0.075 90.67 69.67 65.48 64.63 64.45 64.41
0.100 84.47 63.70 59.52 58.67 58.49 58.45

Table 6. Results of heat transfer in the insulated fin by penalty method of 
interpolation

Node Location (m) 500 sec 1000 sec 1500 sec 2000 sec 2500 sec Steady state
0.000 200.00 200.00 200.00 200.00 200.00 200.00
0.025 133.42 124.10 122.22 121.82 121.74 121.72
0.050 104.61 87.54 84.04 83.30 83.14 83.10
0.075 92.61 70.91 66.40 65.44 65.23 65.18
0.100 88.03 65.85 61.20 60.21 59.99 59.94
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Table 7. Temperature- time history at 10th node

Time 
(Sec)

Convective tip Insulated tip
Direct 
method

Penalty 
method

Direct 
method

Penalty 
method

500 103.00 104.61 102.07 103.68
1000 85.08 87.54 84.41 86.87
1500 81.31 84.04 80.84 83.57
2000 80.49 83.30 80.10 82.90
2500 80.31 83.14 79.94 82.76
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Figure 2. Heat transfer though convective fin using direct 
method of interpolation.
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Figure 3. Heat transfer though insulated fin using direct 
method of interpolation.

Figure 6 depicts the temperature time history at the 
randomly chosen 10th node, which is located at 0.045 m 
from the base. It can be observed that at the initial phase 
of time the temperature lowers down at the faster rate but 
in the later phases it settles down to steady state.
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Figure 4. Heat transfer though convective fin using penalty 
method of interpolation.
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Figure 5. Heat transfer though insulated fin using penalty 
method of interpolation.
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Figure 6. Temperature- time history at 10th node.
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4. Concluding Remark
The transient heat transfer in a longitudinal fin was stud-
ied for convective tip and insulated tip by direct method 
and penalty method of interpolation respectively. The 
dependence of convective heat transfer coefficient on the 
temperature rendered the problem nonlinear. Hence, it 
can be depicted that MLPG method is capable enough to 
address nonlinear and transient heat transfer problems of 
the fins successfully.
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