The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Noise, the unwanted information in a signal reduces the quality of signal. Hence to improve the signal quality, denoising is done. The main aim of the proposed method in this paper is to deconvolve and denoise a noisy signal by least square approach using wavelet filters. In this paper, least square approach given by Selesnick is modified by using different wavelet filters in place of second order sparse matrix applied for deconvolution and smoothing. The wavelet filters used in the proposed approach for denoising are Haar, Daubechies, Symlet, Coiflet, Biorthogonal and Reverse biorthogonal. The result of the proposed experiment is validated in terms of Peak Signal to Noise Ratio (PSNR). Analysis of the experiment results notify that proposed denoising based on least square using wavelet filters are comparable to the performances given by deconvolution and smoothing using the existing second order filter.

Keywords

Least Square, Peak Signal to Noise Ratio (PSNR), Signal Denoising, Wavelet Filters
User