
Abstract
Noise, the unwanted information in a signal reduces the quality of signal. Hence to improve the signal quality, denoising 
is done. The main aim of the proposed method in this paper is to deconvolve and denoise a noisy signal by least square 
­approach using wavelet filters. In this paper, least square approach given by Selesnick is modified by using different ­wavelet 
filters in place of second order sparse matrix applied for deconvolution and smoothing. The wavelet filters used in the 
­proposed approach for denoising are Haar, Daubechies, Symlet, Coiflet, Biorthogonal and Reverse biorthogonal. The result 
of the proposed experiment is validated in terms of Peak Signal to Noise Ratio (PSNR). Analysis of the experiment results 
notify that proposed denoising based on least square using wavelet filters are comparable to the performances given by 
deconvolution and smoothing using the existing second order filter.
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1.  Introduction
Any unwanted signal is defined as noise. In real world, 
signals are often affected by device-specific noise. 
Therefore, signal denoising is a challenging task for 
researchers. The noise is caused due to several reasons 
such as electrical fluctuations in devices and electromag-
netic interference. Noise adds unwanted information to 
the signal which leads to distorted signal. To overcome 
this, we use different denoising techniques in signal 
processing. The main objective in signal denoising is to 
remove maximum noise to get a clean signal. Denoising 
is the kernel of signal processing. Removing the noise 
and retaining details of a signal is the key goal of signal 
denoising techniques.

Signal denoising is a vital task in research areas and for 
the same, various techniques have been proposed. Signals 
in medical applications such as, ECG signals essentially 
depend on denoising techniques1. Signal denoising tech-
niques which use different notch filters and Signal-Noise 
residue algorithm is introduced in 2. This approach is 

basically used to remove disturbances such as, power line 
interferences.

The current trend in signal processing includes 
wavelets. In this paper, we discuss the methods of denois-
ing based on least square approach using wavelet filters. 
The function of filters is to remove noise from the origi-
nal signal. Every wavelet filter used for denoising satisfies 
invertible property. One of the wavelet filters that hold 
much of the recent applications is Haar filter. It has only 
very few computing requirements justifying its wide 
usage.

Generally, wavelets are designed for signal 
processing3–6. Wavelet decomposition is also mathemati-
cally reversible7. If random noise is present in the signal, 
the removal of small variations within the signal can help 
to denoise the signal8. Recently, significant applications of 
wavelet analysis are applied to a wide variety of problems. 
Diverse fields including mathematics, physics, computer 
science and engineering use wavelets9.

In this paper, we are interested to use different wavelet 
filters in the place of second order filter along with the 
least square weighted regularization framework applied 
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for signal deconvolution and denoising approach. The 
wavelet filters used are Daubechies, Symlets, Haar, 
Coiflets, Biorthogonal and Reverse biorthogonal. Among 
them, Daubechies 2, Symlet 3, Coiflet 1, Biorthogonal 2.2 
and Reverse biorthogonal 3.1 are chosen. The proposed 
technique is validated and compared in terms of standard 
quality metric called Peak Signal to Noise Ratio (PSNR) 
against the least square based approach using second 
order filter proposed by Selesnick10.

The mathematical background of the proposed work 
is discussed in section II. The proposed system and the 
experimental results and analysis are given in section III 
and IV respectively. The paper is concluded in section V.

2.  Mathematical Background
The mathematics behind the concept of least square 
based approach for signal deconvolution and denoising is 
discussed in this section.

2.1  Deconvolution
The problem of determining the input to a Linear Time 
Invariant (LTI) system when the output signal is known, 
is termed as Deconvolution. Let y (n) be the output signal 
which is given by, 

y(n) = h(0) x(n) + h(1) x(n − 1) + ...... + h(N) x(n −N)

where, x(n) is the input signal and h(n) is the impulse 
response. y(n) can be written in terms of y = Hx, where, H 
is given by the matrix,
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The H matrices are constant valued along the diagonal 
and are called Toeplitz matrices. The input signal x should 
atleast approximately satisfy y = Hx. The problem formu-
lation for the same is given by
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The solution for signal denoising by minimizing 
Equation (1) is given by,

	 x = (HTH + λ DT D) −1H Ty� (2)

2.2  Smoothing
In this method, the idea is to obtain a denoised signal 
closer to noisy input by least squares weighted regulariza-
tion approach10. As smoothness of the signal increases, the 
energy of its derivative becomes smaller. In other terms, it 
is interpreted as if x is smooth,  becomes small.

Let y(n) be the noisy input signal and x(n) be the 
output that approximates y(n), then the problem formu-
lation is given by,

	 2 2

2 2
min

x
y x xλ− + D � (3)

where, Dx is the second order differentiation of x(n). λ is 
a parameter on which x depends, for smoothening of a 
noisy signal. The signal x get smoother as the value of λ 
increases. The mathematical equation for signal denoising 
using least squares weighted regularization in the method 
of smoothing is given by,

	 x = (I + λ D TD)−1y� (4)

where,I is the identity matrix of same size as that of D.

3.  Proposed System
The existing method of denoising is implemented by 
using second order differential matrix 11. In our proposed 
system, this matrix is replaced with the high pass decom-
position coefficients of different wavelet filters in the least 
squares weighted regularization method of denoising 
applied for deconvolution and smoothing.

3.1 Deconvolution
The block diagram for deconvolution by the least squares 
weighted regularization method is depicted in Figure1. 
An input signal of size n is convolved with a filter and 
a random noise is added to the convolved signal to get a 
noisy signal. Different wavelet filters are chosen for D in 
Equation (2). Further, this noisy signal of size n, convo-
lution matrix n nH × and the chosen n nD × are passed to 
the least square based solution for deconvolution which is 
given in Equation (2). The deconvolved signal obtained in 
this step is validated with a PSNR quality metric against 
existing second order.
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3.2  Smoothing
The block diagram for smoothing by the least squares 
weighted regularization method is also depicted in 
Figure 1. A noisy ECG signal of size n is loaded as input 
to get it denoised. The D matrix given in Equation (4) 
is replaced with high pass decomposition coefficients 
of different wavelet filters. The noisy input of size n and 
matrix n nD × are passed to the Equation (4), which is the 
solution given for smoothing by least squares weighted 
regularization method. Thus obtained denoised signal is 
validated with a PSNR quality metric with input signal as 
reference.

4. � Experimental Results and 
Analysis

In this paper, we proposed the use of different wavelets for 
signal denoising by least squares weighted regularization 
approach. The proposed method is applied on deconvolu-
tion and smoothing techniques. The wavelets included in 
the experiment are Daubechies, Symlets, Haar, Coiflets, 
Biorthogonal and Reverse biorthogonal11. Along with 
second order sparse matrix, Daubechies 2, Symlet 3, 
Coiflet 1, Biorthogonal 2.2 and Reverse biorthogonal 3.1 
are used. An input signal is convolved and a random noise 
is added. For deconvolution, the D matrix is replaced with 
the high pass coefficients of different wavelets filters. In 
case of smoothing, a noisy ECG signal is passed as input 
and is denoised using high pass coefficients of different 
wavelet filters.

The results obtained by the chosen filters for 
deconvolution and smoothing are illustrated in Figures 
2 and 3 respectively. In Figure 2, X-axis represents the 

length of the signal and Y-axis represents the function 
obtained for each x. In Figure 2, (a) shows the input sig-
nal of length 300 and (b) shows noisy signal obtained by 
adding random noise to the convolved signal. The decon-
volution obtained for Second order, Haar, Daubechies 
2, Symlet 3, Coiflet 1, Biorthogonal 2.2 and Reverse 
biorthogonal 3.1 are depicted in Figure 2 (c), (d), (e), (f), 
(g), (h) and (i) respectively. For validation of the results 
obtained, the measurement of PSNR quality metric is 
used. Similarly, Figure 3 (a) shows the noisy input signal 
for smoothing. The denoising obtained by smoothing 
technique for Second order, Haar, Daubechies 2, Symlet 
3, Coiflet 2, Biorthogonal 2.2 and Reverse biorthogonal 
3.1 are depicted in Figure 3 (c), (d), (e), (f), (g) and (h) 
respectively.

Table 1 exhibit the PSNR values obtained for 
deconvolution and smoothing with input signal as 
reference. The PSNR values are compared with the con-
ventional second order filter to validate the improvement 
on using wavelet filters. The signal which has high PSNR 
value is supposed to have less noise. From Table I, it can 
be inferred that the PSNR value is high when Reverse 
Biorthogonal wavelet filter is used. Haar, Daubechies 2, 

Figure 1.  Block diagram for smoothing and 
deconvolution.

Figure 2.  Deconvolution: (a) Input signal (b) Output 
signal (noisy) (c) Second order (d) Haar (e) db2 (f) sym3 (g) 
bior2.2 (h) coif1 (i) rbio3.1.

Figure 3.  Smoothing: (a) Data (b) Second order (c) Haar 
(d) db2 (e) sym3 (f) coif1 (g) bior2.2 (h) rbio3.1.
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Table 1.Comparison of PSNR (db) values obtained for proposed method based on least squares (wavelets) against 
existing second order filter

Method of
Denoising

Second order
Wavelets (Proposed)

Haar Daubechies Symlets Coiflets Biorthogonal
Reverse 

Biorthogonal
Deconvolution 32.5913 32.0972 31.8481 31.7353 31.8159 30.8854 32.6520

Smoothing 22.0606 19.3663 22.8835 23.4117 22.9432 23.4946 15.9736

Symlet 3, Coiflet 1 and Biorthogonal 2.2 are with PSNR 
values 32.0972 dB, 31.8481 dB, 31.7353 dB, 31.8159 dB 
and 30.8854 dB respectively. Since the PSNR value of the 
Second order wavelet filter is 32.5913 dB, other filters are 
found to be comparable with second order filter. Similarly, 
in smoothing, Biorthogonal wavelet filter results in better 
denoising with PSNR value 23.4946 dB. Haar, Daubechies 
2, Symlet 3, Coiflet 1 and Reverse Biorthogonal 3.1 wave-
let filters have their PSNR values as 19.3663 dB, 22.8835 
dB, 23.4117 dB, 22.9432 dB and 15.9736 dB respectively. 
The PSNR value obtained by using second order wavelet 
filter is 22.0606 dB. Thus, it is observed that wavelet filters 
are comparable with second order filter in denoising. The 
analysis of PSNR values on using different wavelet filters 
for deconvolution and smoothing is graphically depicted 
in Figure 4. The horizontal axis represents different wave-
let filters while vertical axis represents the PSNR values 
obtained for deconvolution and smoothing. Figure 4 and 
Table I illustrates that analysis of proposed method based 

Figure 4.  Comparison of PSNR values obtained for six 
wavelet filters in deconvolution and smoothing.

on least square approach using wavelet filters is much 
comparable with the existing second order filter.

5.  Conclusion
To do any signal analysis, it is necessary to get the signal 
cleaned first. The process of denoising is employed in this 
task. In the proposed paper, denoising is achieved by least 
square weighted regularization method using wavelets 
on deconvolution and smoothing techniques. The insight 
of using different wavelets helps in understanding the 
effectiveness of each wavelet that is being used. From the 
experimental results, it can be inferred that most of the other 
wavelet filters used is also giving comparable results when 
compared with the conventional second order filter. In the 
proposed experiment, Reverse Biorthogonal wavelet filter 
performs better in signal deconvolution and Biorthogonal 
wavelet filter gives about 1 dB PSNR improvement in sig-
nal denoising when compared with second order wavelet 
filter. The deconvolution and smoothing programs given 
in are reprogrammed by replacing different wavelets fil-
ters for denoising and the efficiency of the same has been 
determined using the quality metric, PSNR.
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