Open Access Open Access  Restricted Access Subscription Access

An Attention-Grabbing Review on Stigma Maydis (Corn Silk)


Affiliations
1 Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat, India
 

Herbs are one of humanity’s oldest known therapeutic needs for long-term health, and they serve as the foundation for modern medicine. There is currently a thirst and demand for healthy diets with added value all around the world. One such important herb that can be found in many different locations is corn silk. The Chinese and Native Americans have used the herb corn silk (Stigma maydis) for generations to treat a wide range of conditions. Many countries around the world, including Turkey, the United States, and France, use it as traditional medicine. Its potential application is highly dependent on the characteristics and mechanisms of action of the plant’s bioactive ingredients, such as flavonoids, terpenoids, and other phytochemicals. Pharmacological investigations have shown that this traditional plant has medicinal qualities such as anti-oxidant, anti-depressant, anti-hyperlipidemia, anti-diabetic, anti-inflammatory, neuroprotective toxicity and many more.

Keywords

Anti-hypertension, Botanical Description, Corn Silk, Diabetes, Pharmacological Action.
Font Size

User

Notifications
JOURNAL COVERS
  

  • Hasanudin K, Hashim P, Mustafa S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules. 2012; 17:9697– 9715. https://doi.org/10.3390/molecules17089697
  • Wan Rosli WI, Nurhanan AR, Farid CG, Mohsin SS. Effect of Sodium Hydroxyde (NaOH) and Sodium Hypochlorite (NaHClO) on Morphology and Mineral Concentration of Zea mays Hairs (cornsilk). Annals of Microscopy. 2010; 10:4-10.
  • Gwendlin V, Induja TA, Manoj J, Shivasamy MS. Recent trends in effective utilization of by-product of corn. Indian Journal of Science. 2015; 22(76):18-26.
  • Maksimovic Z, Malencic D, Kovacevic N. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresource Technology. 2005; 96(8):873-7. https://doi.org/10.1016/j.biortech.2004.09.006 DOI: https://doi.org/10.1016/j.biortech.2004.09.006
  • Maksimovic ZA, Kovacevic N. Preliminary assay on the antioxidative activity of Maydis stigma extracts. Fitoterapia. 2003; 74(1-2):144-7. https://doi. org/10.1016/S0367-326X(02)00311-8 DOI: https://doi.org/10.1016/S0367-326X(02)00311-8
  • Mohsen SM, Ammar AS. Total phenolic contents and antioxidant activity of corn tassel extracts. Food chemistry. 2009; 112(3):595-8. https://doi. org/10.1016/j.foodchem.2008.06.014 DOI: https://doi.org/10.1016/j.foodchem.2008.06.014
  • El-Ghorab A, El-Massry KF, Shibamoto T. Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). Journal of Agricultural and Food Chemistry. 20 07; 55(22):9124- 7. https://doi.org/10.1021/jf071646e
  • Guo J, Liu T, Han L, Liu Y. The effects of corn silk on glycaemic metabolism. Nutrition and Metabolism. 2009; 6(1):1-6. https://doi.org/10.1186/1743-7075- 6-47
  • Waiss Jr AC, Chan BG, Elliger CA, Wiseman BR, McMillian WW, Widstrom NW, Zuber MS, Keaster AJ. Maysin, a flavone glycoside from corn silks with antibiotic activity toward corn earworm. Journal of Economic Entomology. 1979; 72(2):256-8. https:// doi.org/10.1093/jee/72.2.256
  • Habtemariam S. Extract of corn silk (Stigma of Zea mays) inhibits tumour necrosis factor-α-and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression. Planta Medica. 1998; 64(04):314-8. https://doi.org/10.1055/s-2006-957441
  • Elliger CA, Chan BG, Waiss Jr AC, Lundin RE, Haddon WF. C-Glycosylflavones from Zea mays that inhibit insect development. Phytochemistry. 1980; 19(2):293-7. https://doi.org/10.1016/S0031- 9422(00)81977-9
  • Snook ME, Gueldner RC, Widstrom NW, Wiseman BR, Himmelsbach DS, Harwood JS, Costello CE. Levels of maysin and maysin analogs in silks of maize germplasm. Journal of Agricultural and Food Chemistry. 1993; 41(9):1481-5. https://doi. org/10.1021/jf00033a024 DOI: https://doi.org/10.1021/jf00033a024
  • Sosa A, Lopez de Ruiz RE, Fusco MD, Ruiz SO. Flavonoides y saponinas de estilos y estigmas de Zea mays L.(Gramineae). Acta Farmaceutica Bonaerense. 1997; 16.
  • Fazilatun N, Zhari I, Nornisah M. Phytochemicals from corn silk (Zea mays). J Trop Med Plants. 2001; 2:189-92.
  • Ebrahimzadeh MA, Pourmorad F, Hafezi S. Antioxidant activities of Iranian corn silk. Turkish Journal of Biology. 2008; 32(1):43-9.
  • Liu J, Wang C, Wang Z, Zhang C, Lu S, Liu J. The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chemistry. 2011; 126(1):261-9. https://doi.org/10.1016/j. foodchem.2010.11.014 DOI: https://doi.org/10.1016/j.foodchem.2010.11.014
  • Ho TY, Li CC, Lo HY, Chen FY, Hsiang CY. Corn silk extract and its bioactive peptide ameliorated lipopolysaccharide-induced inflammation in mice via the nuclear factor-κB signaling pathway. Journal of Agricultural and Food Chemistry. 2017; 65(4):759- 68. https://doi.org/10.1021/acs.jafc.6b03327 DOI: https://doi.org/10.1021/acs.jafc.6b03327
  • Que L, Li HR. Discussion on the Herbal Prescription Features in Materia Medica of South Yunnan. Journal of Yunnan University of Traditional Chinese Medicine. 2011.
  • Lu S, Wu J, Gao Y, Han G, Ding W, Huang X. MicroRNA-4262 activates the NF-κB and enhances the proliferation of hepatocellular carcinoma cells. International Journal of Biological Macromolecules. 2016; 86:43-9. https://doi.org/10.1016/j. ijbiomac.2016.01.019 DOI: https://doi.org/10.1016/j.ijbiomac.2016.01.019
  • Ramessar K, Sabalza M, Capell T, Christou P. Maize plants: An ideal production platform for effective and safe molecular pharming. Plant Science. 2008; 174(4):409-19. https://doi.org/10.1016/j.plantsci DOI: https://doi.org/10.1016/j.plantsci.2008.02.002
  • Wynn SG, Fougere BJ. Materia medica. Veterinary Herbal Medicine. St Louis, MO: Mosby, Elsevier. 2007; 610-1.
  • Anderson E, Brown WL. The history of the common maize varieties of the United States corn belt. Agricultural History. 1952; 26(1):2-8.
  • Hasanudin K, Hashim P, Mustafa S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules. 2012; 17(8):9697- 715. https://doi.org/10.3390/molecules17089697
  • Leon ND, Coors JG. Genetic Improvement of Corn for Lignocellulosic. In Genetic Improvement of Bioenergy Crops. Springer, New York, NY. 2008; pp. 185-210. https://doi.org/10.1007/978-0-387- 70805-8_7 DOI: https://doi.org/10.1007/978-0-387-70805-8_7
  • Inglett GE. Corn: Culture, Processing, Products; The AVI Publishing Company: Westport, CT, USA, 1970.
  • Rahman NA, Rosli WI. Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn. Journal of King Saud University-Science. 2014; 26(2):119. https://doi. org/10.1016/j.jksus.2013.11.002
  • Alam EA. Evaluation of antioxidant and antibacterial activities of Egyptian Maydis stigma (Zea mays hairs) rich in some bioactive constituents. J. Am. Sci. 2011; 7(726-729):2011.
  • Chen S, Chen H, Tian J, Wang J, Wang Y, Xing L. Enzymolysis-ultrasonic assisted extraction, chemical characteristics and bioactivities of polysaccharides from corn silk. Carbohydrate polymers. 2014; 101:332- 41. https://doi.org/10.1016/j.carbpol.2013.09.046 DOI: https://doi.org/10.1016/j.carbpol.2013.09.046
  • Ren SC, Liu ZL, Ding XL. Isolation and identification of two novel flavone glycosides from corn silk (Stigma maydis). Journal of Medicinal Plants Research. 2009; 3(12):1009-15.
  • Rahman NA, Rosli WI. Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn. Journal of King Saud University-Science. 2014; 26(2):119-27. https://doi. org/10.1016/j.jksus.2013.11.002 DOI: https://doi.org/10.1016/j.jksus.2013.11.002
  • Elliger CA, Chan BG, Waiss Jr AC, Lundin RE, Haddon WF. C-Glycosylflavones from Zea mays that inhibit insect development. Phytochemistry. 1980; 19(2):293-7. https://doi.org/10.1016/S0031- 9422(00)81977-9 DOI: https://doi.org/10.1016/S0031-9422(00)81977-9
  • Waiss Jr AC, Chan BG, Elliger CA, Wiseman BR, McMillian WW, Widstrom NW, Zuber MS, Keaster AJ. Maysin, a flavone glycoside from corn silks with antibiotic activity toward corn earworm. Journal of Economic Entomology. 1979; 72(2):256-8. https:// doi.org/10.1093/jee/72.2.256 DOI: https://doi.org/10.1093/jee/72.2.256
  • El-Ghorab A, El-Massry KF, Shibamoto T. Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). Journal of agricultural and food chemistry. 2007; 55(22):9124-7. https://doi.org/10.1021/jf071646e DOI: https://doi.org/10.1021/jf071646e
  • Wang KJ, Zhao JL. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomedicine and Pharmacotherapy. 2019; 110:510-7. https://doi. org/10.1016/j.biopha.2018.11.126 DOI: https://doi.org/10.1016/j.biopha.2018.11.126
  • Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? The lancet. 1994; 344(8924):721-4. https://doi.org/10.1016/ S0140-6736(94)92211-X DOI: https://doi.org/10.1016/S0140-6736(94)92211-X
  • Sarepoua E, Tangwongchai R, Suriharn B, Lertrat K. Influence of variety and harvest maturity on phytochemical content in corn silk. Food Chemistry. 2015; 169:424-9. https://doi.org/10.1016/j. foodchem.2014.07.136 DOI: https://doi.org/10.1016/j.foodchem.2014.07.136
  • Ebrahimzadeh MA, Pourmorad F, Bekhradnia AR. Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. African Journal of Biotechnology. 2008; 7(18).
  • Sokolova R, Degano I, Ramesova S, Bulickova J, Hromadova M, Gal M, Fiedler J, Valasek M. The oxidation mechanism of the antioxidant quercetin in nonaqueous media. Electrochimica Acta. 2011; 56(21):7421-7. https://doi.org/10.1016/j. electacta.2011.04.121 DOI: https://doi.org/10.1016/j.electacta.2011.04.121
  • Nguemfo EL, Dimo T, Azebaze AG, Asongalem EA, Alaoui K, Dongmo AB, Cherrah Y, Kamtchouing P. Anti-inflammatory and anti-nociceptive activities of the stem bark extracts from Allanblackia monticola STANER LC (Guttiferae). Journal of Ethnopharmacology. 2007; 114(3):417-24. https:// doi.org/10.1016/j.jep.2007.08.022 DOI: https://doi.org/10.1016/j.jep.2007.08.022
  • Stoecklin G, Lu M, Rattenbacher B, Moroni C. A constitutive decay element promotes tumor necrosis factor alpha mRNA degradation via an AU-rich element-independent pathway. Molecular and Cellular Biology. 2003; 23(10):3506-15. https://doi. org/10.1128/MCB.23.10.3506-3515.2003 DOI: https://doi.org/10.1128/MCB.23.10.3506-3515.2003
  • Habtemariam S. Extract of corn silk (Stigma of Zea mays) inhibits tumour necrosis factor-α-and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression. Planta Medica. 1998; 64(04):314-8. https://doi. org/10.1055/s-2006-957441 DOI: https://doi.org/10.1055/s-2006-957441
  • Wang GQ, Xu T, Bu XM, Liu BY. Anti-inflammation effects of corn silk in a rat model of carrageenin-induced pleurisy. Inflammation. 2012; 35(3):822-7. https://doi.org/10.1007/s10753-011-9382-9 DOI: https://doi.org/10.1007/s10753-011-9382-9
  • Kim KA, Shin HH, Choi SK, Choi HS. Corn silk induced cyclooxygenase-2 in murine macrophages. Bioscience, Biotechnology, and Biochemistry. 2005; 69(10):1848-53. https://doi.org/10.1271/bbb.69.1848 DOI: https://doi.org/10.1271/bbb.69.1848
  • Sahib AS, Mohammed IH, Hamdan SJ. Use of aqueous extract of corn silk in the treatment of urinary tract infection. Journal of Complementary Medicine Research. 1970; 1(2):93. https://doi.org/10.5455/ jice.20120525123150 DOI: https://doi.org/10.5455/jice.20120525123150
  • Nessa F, Ismail Z, Mohamed N. Antimicrobial activities of extracts and flavonoid glycosides of corn silk (Zea mays L). International Journal of Biotechnology for Wellness Industries. 2012; 1(2):115-20. https://doi. org/10.6000/1927-3037/2012.01.02.02 DOI: https://doi.org/10.6000/1927-3037/2012.01.02.02
  • Kang HK, Bae IK. Antimicrobial activities of corn silk extract of Klebsiella pneumoniae. Journal of Life Science. 2015; 25(12):1399-407. https://doi. org/10.5352/JLS.2015.25.12.1399 DOI: https://doi.org/10.5352/JLS.2015.25.12.1399
  • Kaur D, Kaur D, Bains NA, Chopra AN, Arora PO. Anti-anxiety evaluation of extracts of stigma maydis (corn silk). Int J Pharm Pharm Sci. 2015; 8:309-12.
  • Tanaka M, Nakamura F, Mizokawa S, Matsumura A, Nozaki S, Watanabe Y. Establishment and assessment of a rat model of fatigue. Neuroscience Letters. 2003; 352(3):159-62. https://doi.org/10.1016/j. neulet.2003.08.051 DOI: https://doi.org/10.1016/j.neulet.2003.08.051
  • Yu B, Lu ZX, Bie XM, Lu FX, Huang XQ. Scavenging and anti-fatigue activity of fermented defatted soybean peptides. European Food Research and Technology. 2008; 226(3):415-21. https://doi.org/10.1007/s00217- 006-0552-1 DOI: https://doi.org/10.1007/s00217-006-0552-1
  • Ebrahimzadeh, MA, M Mahmoudi, N Ahangar. “Antidepressant activity of corn silk”. 2009; 647-652.
  • Zhao W, Yin Y, Yu Z, Liu J, Chen F. Comparison of antidiabetic effects of polysaccharides from corn silk on normal and hyperglycemia rats. International Journal of Biological Macromolecules. 2012; 50(4):1133-7. https://doi.org/10.1016/j.ijbiomac.2012.02.004
  • Jiang QG, Li TY, Liu DN, Zhang HT. PI3K/Akt pathway involving into apoptosis and invasion in human colon cancer cells LoVo. Molecular biology reports. 2014; 41(5):3359-67. https://doi.org/10.1007/ s11033-014-3198-2 DOI: https://doi.org/10.1007/s11033-014-3198-2
  • Su TR, Tsai FJ, Lin JJ, Huang HH, Chiu CC, Su JH, Yang YT, Chen JY, Wong BS, Wu YJ. Induction of apoptosis by 11-dehydrosinulariolide via mitochondrial dysregulation and ER stress pathways in human melanoma cells. Marine Drugs. 2012; 10(8):1883-98. https://doi.org/10.3390/md10081883 DOI: https://doi.org/10.3390/md10081883
  • Guo H, Guan H, Yang W, Liu H, Hou H, Chen X, Liu Z, Zang C, Liu Y, Liu J. Pro-apoptotic and anti proliferative effects of corn silk extract on human colon cancer cell lines. Oncology Letters. 2017; 13(2):973-8. https://doi.org/10.3892/ol.2016.5460 DOI: https://doi.org/10.3892/ol.2016.5460
  • Tao H, Chen X, Du Z, Ding K. Corn silk crude polysaccharide exerts anti-pancreatic cancer activity by blocking the EGFR/PI3K/AKT/CREB signaling pathway. Food and Function. 2020; 11(8):6961-70. https://doi.org/10.1039/D0FO00403K DOI: https://doi.org/10.1039/D0FO00403K
  • Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Physical Therapy. 2008; 88(11):1254- 64. https://doi.org/10.2522/ptj.20080020 DOI: https://doi.org/10.2522/ptj.20080020
  • Kamyab H, Hejrati S, Khanavi M, Malihi F, Mohammadirad A, Baeeri M, Esmaily H, Abdollahi M. Hepatic mechanisms of the walnut antidiabetic effect in mice. Central European Journal of Biology. 2010; 5(3):304-9. https://doi.org/10.2478/s11535- 010-0019-z DOI: https://doi.org/10.2478/s11535-010-0019-z
  • Shafiei NR, Parizadeh SM, Zokaei N, Ghorbani A. Effect of hydro-alcoholic extract of Vaccinium arctostaphylos on insulin release from rat-isolated langerhans islets.
  • Shafiee-Nick R, Parizadeh SM, Zokaei N, Ghorbani A. Effect of Ganoderma lucidum hydroalcoholic extract on insulin release in rat-isolated pancreatic islets. Avicenna Journal of Phytomedicine. 2012; 2(4):206.
  • Guo J, Liu T, Han L, Liu Y. The effects of corn silk on glycaemic metabolism. Nutrition and metabolism. 2009; 6(1):1-6. https://doi.org/10.1186/1743-7075-6- 47
  • Zhao W, Yin Y, Yu Z, Liu J, Chen F. Comparison of antidiabetic effects of polysaccharides from corn silk on normal and hyperglycemia rats. International Journal of Biological Macromolecules. 2012; 50(4):1133-7. https://doi.org/10.1016/j.ijbiomac.2012.02.004
  • Sabiu S, O’neill FH, Ashafa AO. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Journal of Ethnopharmacology. 2016; 183:1-8. https://doi. org/10.1016/j.jep.2016.02.024 DOI: https://doi.org/10.1016/j.jep.2016.02.024
  • Kaushal J, Singh G, Arya SK. Emerging trends and future prospective in enzyme technology. In Value Addition in Food Products and Processing Through Enzyme Technology. Academic Press. 2022; pp. 491-503. https://doi.org/10.1016/B978-0-323-89929- 1.00036-6 DOI: https://doi.org/10.1016/B978-0-323-89929-1.00036-6
  • Bader M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annual review of pharmacology and toxicology. 2010; 50:439-65. https://doi.org/10.1146/annurev. pharmtox.010909.105610 DOI: https://doi.org/10.1146/annurev.pharmtox.010909.105610
  • Wright JM, Musini VM, Gill R. First‐line drugs for hypertension. Cochrane Database of systematic reviews. 2018; (4). https://doi.org/10.1002/14651858. CD001841.pub3 DOI: https://doi.org/10.1002/14651858.CD001841.pub3
  • Hasanudin K, Hashim P, Mustafa S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules. 2012; 17(8):9697- 71. https://doi.org/10.3390/molecules17089697 DOI: https://doi.org/10.3390/molecules17089697
  • George GO, Idu FK. Corn silk aqueous extracts and intraocular pressure of systemic and non‐systemic hypertensive subjects. Clinical and Experimental Optometry. 2015; 98(2):138-49. https://doi. org/10.1111/cxo.12240 DOI: https://doi.org/10.1111/cxo.12240
  • Fuchs S, Xiao HD, Hubert C, Michaud A, Campbell DJ, Adams JW, Capecchi MR, Corvol P, Bernstein KE. Angiotensin-converting enzyme C-terminal catalytic domain is the main site of angiotensin I cleavage in vivo. Hypertension. 2008; 51(2):267-74. https://doi. org/10.1161/HYPERTENSIONAHA.107.097865 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.107.097865
  • Masuyer G, Schwager SL, Sturrock ED, Isaac RE, Acharya KR. Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Scientific reports. 2012; 2(1):1-0. https://doi.org/10.1038/ srep00717 DOI: https://doi.org/10.1038/srep00717
  • Martin N, Pantoja C, Chiang L, Bardisa L, Araya C, Roman R. Hemodynamic effects of a boiling water dialysate of maize silk in normotensive anaesthetized dogs. Journal of Eethno-pharmacology. 1991. https:// doi.org/10.1016/0378-8741(91)90010-B DOI: https://doi.org/10.1016/0378-8741(91)90010-B
  • Miyoshi S, Kaneko T, Ishikawa H, Tanaka H, Maruyama S. Production of bioactive peptides from corn endosperm proteins by some proteases. Annals of the New York Academy of Sciences. 1995; 750(1):429-31. https://doi.org/10.1111/j.1749-6632.1995.tb19990.x DOI: https://doi.org/10.1111/j.1749-6632.1995.tb19990.x
  • Muzzi‐Bjornson L, Macera L. Preventing infection in elders with long‐term indwelling urinary catheters. Journal of the American Academy of nurse Practitioners. 2011; 23(3):127-34. https://doi. org/10.1111/j.1745-7599.2010.00588.x DOI: https://doi.org/10.1111/j.1745-7599.2010.00588.x
  • Aukkanit N, Kemngoen T, Ponharn N. Utilization of corn silk in low fat meatballs and its characteristics. Procedia-Social and Behavioral Sciences. 2015; 197:1403-10. https://doi.org/10.1016/j. sbspro.2015.07.086 DOI: https://doi.org/10.1016/j.sbspro.2015.07.086
  • Mada SB, Sani L, Chechet GD. Corn Silk From Waste Material to Potential Therapeutic Agent: A Mini Review.
  • Alfath CR, Yulina V, Sunnati S. Antibacterial effect of granati fructus cortex extract on Streptococcus mutans in vitro. Journal of Dentistry Indonesia. 2013; 20(1):5-8. https://doi.org/10.14693/jdi.v20i1.126 DOI: https://doi.org/10.14693/jdi.v20i1.126
  • Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. International Journal of Nanomedicine. 2011; 6:877. https://doi. org/10.2147/IJN.S18905 DOI: https://doi.org/10.2147/IJN.S18905
  • Sukandar EY, Sigit JI, Adiwibowo LF. Study of kidney repair mechanisms of corn silk (Zea mays L. Hair)-binahong (Anredera cordifolia (Ten.) Steenis) leaves combination in rat model of kidney failure. International Journal of Pharmacology. 2013; 9(1):12- 23. https://doi.org/10.3923/ijp.2013.12.23 DOI: https://doi.org/10.3923/ijp.2013.12.23
  • Reaven GM. Banting lecture. Role of insulin resistance in human disease. Diabetes. 1988; 37:1595- 607. https://doi.org/10.2337/diab.37.12.1595 DOI: https://doi.org/10.2337/diab.37.12.1595
  • Alberti, K. GMMF. “ International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity: Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation....” Circulation 120. 2009; 1640-1645. https://doi.org/10.1161/ CIRCULATIONAHA.109.192644 DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.192644
  • Guo J, Liu T, Han L, Liu Y. The effects of corn silk on glycaemic metabolism. Nutrition and Metabolism. 2009; 6(1):1-6. https://doi.org/10.1186/1743-7075-6- 47 DOI: https://doi.org/10.1186/1743-7075-6-47
  • Zhao W, Yin Y, Yu Z, Liu J, Chen F. Comparison of antidiabetic effects of polysaccharides from corn silk on normal and hyperglycemia rats. International Journal of Biological Macromolecules. 2012; 50(4):1133-7. https://doi.org/10.1016/j.ijbiomac.2012.02.004 DOI: https://doi.org/10.1016/j.ijbiomac.2012.02.004
  • Wen X, Yue L. The influence of corn silk polysaccharide on signal pathway of TGF-β1 in type 2 diabetic mellitus rat. The open Biomedical Engineering Journal. 2015; 9:204. https://doi.org/10.2174/1874120701509010204 DOI: https://doi.org/10.2174/1874120701509010204
  • Krishna GG. Effect of potassium intake on blood pressure. Journal of the American Society of Nephrology. 1990; 1(1):43-52. https://doi. org/10.1681/ASN.V1143 DOI: https://doi.org/10.1681/ASN.V1143
  • Cui R, Qi Z, Zhou L, Li Z, Li Q, Zhang J. Evaluation of serum lipid profile, body mass index, and waistline in Chinese patients with type 2 diabetes mellitus. Clinical Interventions in Aging. 2016; 11:445. https:// doi.org/10.2147/CIA.S104803 DOI: https://doi.org/10.2147/CIA.S104803
  • Pérez MR, Medina-Gomez G. Obesity, adipogenesis and insulin resistance. Endocrinologia y Nutricion (English Edition). 2011; 58(7):360-9. https://doi. org/10.1016/j.endoen.2011.05.004 DOI: https://doi.org/10.1016/j.endoen.2011.05.004
  • Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. Journal of Lipid Research. 2007; 48(6):1253-62. https://doi. org/10.1194/jlr.R700005-JLR200 DOI: https://doi.org/10.1194/jlr.R700005-JLR200
  • Sorisky A, Magun R, Gagnon AM. Adipose cell apoptosis: death in the energy depot. International Journal of Obesity. 2000; 24(4):S3-7. https://doi. org/10.1038/sj.ijo.0801491 DOI: https://doi.org/10.1038/sj.ijo.0801491
  • Sulaimon SS, Kitchell BE. The biology of melanocytes. Veterinary Dermatology. 2003; 14(2):57-65. https:// doi.org/10.1046/j.1365-3164.2003.00327.x DOI: https://doi.org/10.1046/j.1365-3164.2003.00327.x
  • Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007; 445(7130):843-50. https://doi.org/10.1038/nature05660 DOI: https://doi.org/10.1038/nature05660
  • Choi SY, Lee Y, Kim SS, Ju HM, Baek JH, Park CS, Lee DH. Inhibitory effect of corn silk on skin pigmentation. Molecules. 2014; 19(3):2808-18. https://doi.org/10.3390/molecules19032808 DOI: https://doi.org/10.3390/molecules19032808
  • Telang M. Molecular analysis of plant-pest interaction with special reference to helicoverpa armigera and proteinase inhibitors from host and non-host plants. 2000.

Abstract Views: 109

PDF Views: 62




  • An Attention-Grabbing Review on Stigma Maydis (Corn Silk)

Abstract Views: 109  |  PDF Views: 62

Authors

Kinjal P. Patel
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat, India
Dhanya B. Sen
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat, India
Ashim Kumar Sen
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat, India
Rajesh A. Maheshwari
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat, India

Abstract


Herbs are one of humanity’s oldest known therapeutic needs for long-term health, and they serve as the foundation for modern medicine. There is currently a thirst and demand for healthy diets with added value all around the world. One such important herb that can be found in many different locations is corn silk. The Chinese and Native Americans have used the herb corn silk (Stigma maydis) for generations to treat a wide range of conditions. Many countries around the world, including Turkey, the United States, and France, use it as traditional medicine. Its potential application is highly dependent on the characteristics and mechanisms of action of the plant’s bioactive ingredients, such as flavonoids, terpenoids, and other phytochemicals. Pharmacological investigations have shown that this traditional plant has medicinal qualities such as anti-oxidant, anti-depressant, anti-hyperlipidemia, anti-diabetic, anti-inflammatory, neuroprotective toxicity and many more.

Keywords


Anti-hypertension, Botanical Description, Corn Silk, Diabetes, Pharmacological Action.

References





DOI: https://doi.org/10.18311/jnr%2F2023%2F31289