Open Access Open Access  Restricted Access Subscription Access

A Review on Phytoconstituents and Metal Complexes for the Treatment of Tuberculosis


Affiliations
1 Dr. APJ Abdul Kalam Research Laboratory, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India
 

Tuberculosis (TB) is an infectious lung disease. Tiny droplets discharged into the air during cough and sneezes by an individual can transmit the bacteria that cause tuberculosis from one person to another. More than one million people die each year as a result of the communicable disease tuberculosis. Anti-TB allopathic drugs have been administered to treat the disease’s symptoms; however, they can produce negative side effects such as hepatitis, hypersensitivity reactions, nausea, vomiting, etc. As a result of the toxicity and side effects of allopathic medicines, the use of herbal medicine is growing in popularity. Since ancient times, medicinal plants have been used to treat illnesses. Alkaloids, coumarins, flavonoids, polyphenols, terpenoids, quinines, and other secondary metabolites that have antibacterial activity are produced by plants and may be helpful in the treatment of tuberculosis. This review aims to explore the possible uses of medicinal herbs and metal complexes with antitubercular capabilities.

Keywords

Iron Complex, Metal Complex, Terpenes, Tuberculosis.
Font Size

User

Notifications
JOURNAL COVERS
  

  • Sudre P, Ten Dam G, Kochi A. Tuberculosis: A global overview of the situation today. Bulletin of the World Health Organization. 1992; 70(2):149.
  • Joseph J, Nagashri K, Janaki GB. Novel metal based antituberculosis agent: Synthesis, characterization, catalytic and pharmacological activities of copper complexes. European Journal of Medicinal Chemistry. 2012; 49:151-63. https:// doi.org/10.1016/j.ejmech.2012.01.006
  • Rafique S, Idrees M, Nasim A, Akbar H, Athar A. Transition metal complexes as potential therapeutic agents. Biotechnology and Molecular Biology Reviews. 2010; 5(2):38-45.
  • Rai M, Ingle AP, Birla S, Yadav A, Santos CA. Strategic role of selected noble metal nanoparticles in medicine. Critical Reviews in Microbiology. 2016; 42(5):696-719.
  • Keri RS, Sasidhar BS, Nagaraja BM, Santos MA. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. European Journal of Medicinal Chemistry. 2015; 100:257-69. https://doi. org/10.1016/j.ejmech.2015.06.017
  • Dueke-Eze CU, Fasina TM, Oluwalana AE, Familoni OB, Mphalele JM, Onubuogu C. Synthesis and biological evaluation of copper and cobalt complexes of (5-substituted-salicylidene) isonicotinichydrazide derivatives as antitubercular agents. Scientific African. 2020; 9:e00522. https://doi.org/10.1016/j.sciaf.2020.e00522
  • Winder FG, Denneny JM. Metal-catalysed auto-oxidation of isoniazid. Biochemical Journal. 1959; 73(3):500. https:// doi.org/10.1042/bj0730500
  • Chinsembu KC. Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. Acta Tropica. 2016; 153:46-56. https://doi.org/10.1016/j.actatropica.2015.10.004
  • Gutierrez-Merino C, Lopez-Sanchez C, Lagoa R, K Samhan-Arias A, Bueno C, Garcia-Martinez V. Neuroprotective actions of flavonoids. Current Medicinal Chemistry. 2011; 18(8):1195-212. https://doi. org/10.2174/092986711795029735
  • Leitao SG, Castro O, Fonseca EN, Juliao LS, Tavares ES, Leo RR, Vieira RC, Oliveira DR, Leitao GG, Martino V, Sulsen V. Screening of Central and South American plant extracts for antimycobacterial activity by the Alamar Blue test. Revista Brasileira de Farmacognosia. 2006; 16:6-11. https:// doi.org/10.1590/S0102-695X2006000100003
  • Carpenter CD, O’Neill T, Picot N, Johnson JA, Robichaud GA, Webster D, Gray CA. Anti-mycobacterial natural products from the Canadian medicinal plant Juniperus communis. Journal of Ethnopharmacology. 2012; 143(2):695-700. https://doi.org/10.1016/j.jep.2012.07.035
  • Chinsembu KC. Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. Acta Tropica. 2016; 153:46-56. https://doi.org/10.1016/j.actatropica.2015.10.004
  • Sieniawska E, Sawicki R, Swatko-Ossor M, Napiorkowska A, Przekora A, Ginalska G, Augustynowicz-Kopec E. The effect of combining natural terpenes and antituberculous agents against reference and clinical Mycobacterium tuberculosis strains. Molecules. 2018; 23(1):176. https://doi. org/10.3390/molecules23010176
  • Sieniawska E, Swatko-Ossor M, Sawicki R, SkalickaWoźniak K, Ginalska G. Natural terpenes influence the activity of antibiotics against isolated Mycobacterium tuberculosis. Medical Principles and Practice. 2017; 26(2):108-12. https://doi.org/10.1159/000454680
  • Moussa AY, Sobhy HA, Eldahshan OA, Singab AN. Caspicaiene: A new kaurene diterpene with anti-tubercular activity from an Aspergillus endophytic isolate in Gleditsia caspia desf. Natural Product Research. 2021; 35(24):5653- 64. https://doi.org/10.1080/14786419.2020.1824222
  • Umumararungu T, Mukazayire MJ, Mpenda M, Mukanyangezi MF, Nkuranga JB, Mukiza J, Olawode EO. A review of recent advances in anti-tubercular drug development. Indian Journal of Tuberculosis. 2020; 67(4):539-59. https://doi.org/10.1016/j.ijtb.2020.07.017
  • Bollikolla HB, Tyagi R, Gokada MR, Anandam R, Kasthuri JK, Alam MM, Mannam KM. Flavones as Important Scaffolds for Anticancer, Antioxidant and Anti-Tubercular Activities: An Overview of Reports 2015–2020. Moscow University Chemistry Bulletin. 2022; 77(5):269-85. https:// doi.org/10.3103/S0027131422050042
  • Banci L, Sigel A, Sigel H, Sigel RK. Metallomics and the cell. Metal Ions in Life Sciences.
  • Andreini C, Banci L, Bertini I, Rosato A. Zinc through the three domains of life. Journal of Proteome Research. 2006; 5(11):3173-8. https://doi.org/10.1021/pr0603699
  • Kusalik A, Bickis M, Lewis C, Li Y, Lucchese G, Marincola FM, Kanduc D. Widespread and ample peptide overlapping between HCV and Homo sapiens proteomes. Peptides. 2007; 28(6):1260-7. https://doi.org/10.1016/j.peptides.2007.04.001
  • King JV, Liang WG, Scherpelz KP, Schilling AB, Meredith SC, Tang WJ. Molecular basis of substrate recognition and degradation by human presequence protease. Structure. 2014; 22(7):996-1007. https://doi.org/10.1016/j. str.2014.05.003
  • Rawlings ND, Barrett AJ. Evolutionary families of metallopeptidases. In Methods in enzymology. Academic Press. 1995; l(248):183-228. https://doi.org/10.1016/0076- 6879(95)48015-3
  • Minde DP, Maurice MM, Rüdiger SG. Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp.
  • Thomas NV, Kim SK. Metalloproteinase inhibitors: status and scope from marine organisms. Biochemistry Research International. 2010; 2010. https://doi. org/10.1155/2010/845975
  • Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiological Reviews. 2005; 85(1):1-31. https:// doi.org/10.1152/physrev.00048.2003
  • Shah PK. Inflammation, metalloproteinases, and increased proteolysis: An emerging pathophysiological paradigm in aortic aneurysm. Circulation. 1997; 96(7):2115-7. https:// doi.org/10.1161/01.CIR.96.7.2115
  • Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation Research. 2003; 92(8):827-39. https://doi.org/10.1161/01.RES.0000070112.80711.3D
  • Hideaki N. Matrix metalloproteinases. Journal of Biological Chemistry. 1999; 274(31):21491-4. https://doi.org/10.1074/ jbc.274.31.21491
  • Hayashidani S, Tsutsui H, Ikeuchi M, Shiomi T, Matsusaka H, Kubota T, Imanaka-Yoshida K, Itoh T, Takeshita A. Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology. 2003; 285(3):H1229-35. https://doi. org/10.1152/ajpheart.00207.2003
  • Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K, Kinugawa S, Tsutsui H. Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension. 2006; 47(4):711-7. https://doi.org/10.1161/01. HYP.0000208840.30778.00
  • Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature medicine. 1999; 5(10):1135-42. https://doi. org/10.1038/13459
  • Alessio E, Editor. Bioinorganic medicinal chemistry. John Wiley and Sons. 2011. https://doi. org/10.1002/9783527633104
  • Barry NP, Sadler PJ. Exploration of the medical periodic table: Towards new targets. Chemical Communications. 2013; 49(45):5106-31. https://doi.org/10.1039/c3cc41143e
  • Bruijnincx PC, Sadler PJ. New trends for metal complexes with anticancer activity. Current Opinion in Chemical Biology. 2008; 12(2):197-206. https://doi.org/10.1016/j. cbpa.2007.11.013
  • Gasser G. Metal complexes and medicine: A successful combination. Chimia. 2015; 69(7-8):442. https://doi. org/10.2533/chimia.2015.442
  • Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chemical Reviews. 2016; 116(5):3436-86. https://doi.org/10.1021/acs. chemrev.5b00597
  • Shingnapurkar D, Dandawate P, Anson CE, Powell AK, Afrasiabi Z, Sinn E, Pandit S, Swamy KV, Franzblau S, Padhye S. Synthesis and characterization of pyruvate–isoniazid analogs and their copper complexes as potential ICL inhibitors. Bioorganic and Medicinal Chemistry Letters. 2012; 22(9):3172-6. https://doi.org/10.1016/j.bmcl.2012.03.047
  • Silva PB, Souza PC, Calixto GM, Lopes ED, Frem RC, Netto AV, Mauro AE, Pavan FR, Chorilli M. In vitro activity of copper (II) complexes, loaded or unloaded into a nanostructured lipid system, against Mycobacterium tuberculosis. International Journal of Molecular Sciences. 2016; 17(5):745. https://doi.org/10.3390/ijms17050745
  • Firmino GS, de Souza MV, Pessoa C, Lourenco M, Resende JA, Lessa JA. Synthesis and evaluation of copper (II) complexes with isoniazid-derived hydrazones as anticancer and antitubercular agents. BioMetals. 2016; 29(6):953-63. https://doi.org/10.1007/s10534-016-9968-7.
  • Sato MR, Oshiro Junior JA, Machado RT, de Souza PC, Campos DL, Pavan FR, da Silva PB, Chorilli M. Nanostructured lipid carriers for incorporation of copper (II) complexes to be used against Mycobacterium tuberculosis. Drug Design, Development and Therapy. 2017; 2017(11):909-21. https://doi.org/10.2147/DDDT.S127048
  • Barbosa AR, Caleffi-Ferracioli KR, Leite CQ, GarciaRamos JC, Toledano-Magana Y, Ruiz-Azuara L, Siqueira VL, Pavan FR, Cardoso RF. Potential of Casiopeínas® copper complexes and antituberculosis drug combination against Mycobacterium tuberculosis. Chemotherapy. 2016; 61(5):249-55. https://doi.org/10.1159/000443496
  • Belwal S, Kariveda S, Ramagiri S. Study on Synthesis, Characterization and Antituberculosis Activity of Biologically Nanostructured Zinc and Titanium Metal Compounds. New Innovations in Chemistry and Biochemistry. 2021; 5:60-70. https://doi.org/10.9734/bpi/ nicb/v5/14502D
  • Hadda TB, Akkurt M, Baba MF, Daoudi M, Bennani B, Kerbal A, Chohan ZH. Anti-tubercular activity of ruthenium (II) complexes with polypyridines. Journal of Enzyme Inhibition and Medicinal Chemistry. 2009; 24(2):457-63. https://doi.org/10.1080/14756360802188628
  • Singh R, Nawale L, Arkile M, Wadhwani S, Shedbalkar U, Chopade S, Sarkar D, Chopade BA. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. International Journal of Nanomedicine. 2016; 11:1889. https://doi.org/10.2147/IJN.S102488
  • Tarallo MB, Urquiola C, Monge A, Costa BP, Ribeiro RR, Costa-Filho AJ, Mercader RC, Pavan FR, Leite CQ, Torre MH, Gambino D. Design of novel iron compounds as potential therapeutic agents against tuberculosis. Journal of Inorganic Biochemistry. 2010; 104(11):1164-70. https://doi. org/10.1016/j.jinorgbio.2010.07.005
  • Savic-Gajic IM, Savić IM. Drug design strategies with metal-hydroxyquinoline complexes. Expert Opinion on Drug Discovery. 2020; 15(3):383-90. https://doi.org/10.108 0/17460441.2020.1702964

Abstract Views: 102

PDF Views: 76




  • A Review on Phytoconstituents and Metal Complexes for the Treatment of Tuberculosis

Abstract Views: 102  |  PDF Views: 76

Authors

Sk. Zakki Uddin
Dr. APJ Abdul Kalam Research Laboratory, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India
Nirupama Panda
Dr. APJ Abdul Kalam Research Laboratory, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India
G. V. Anjana
Dr. APJ Abdul Kalam Research Laboratory, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India
M. K. Kathiravan
Dr. APJ Abdul Kalam Research Laboratory, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India

Abstract


Tuberculosis (TB) is an infectious lung disease. Tiny droplets discharged into the air during cough and sneezes by an individual can transmit the bacteria that cause tuberculosis from one person to another. More than one million people die each year as a result of the communicable disease tuberculosis. Anti-TB allopathic drugs have been administered to treat the disease’s symptoms; however, they can produce negative side effects such as hepatitis, hypersensitivity reactions, nausea, vomiting, etc. As a result of the toxicity and side effects of allopathic medicines, the use of herbal medicine is growing in popularity. Since ancient times, medicinal plants have been used to treat illnesses. Alkaloids, coumarins, flavonoids, polyphenols, terpenoids, quinines, and other secondary metabolites that have antibacterial activity are produced by plants and may be helpful in the treatment of tuberculosis. This review aims to explore the possible uses of medicinal herbs and metal complexes with antitubercular capabilities.

Keywords


Iron Complex, Metal Complex, Terpenes, Tuberculosis.

References





DOI: https://doi.org/10.18311/jnr%2F2023%2F32121