Open Access Open Access  Restricted Access Subscription Access

Herbs as Antidote for Snakebite Treatment in India — Traditional Practices and It’s Future Prospects — A Review


Affiliations
1 Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore – 641114, Tamil Nadu, India
2 Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore – 641021, Tamil Nadu, India
3 Department of Biotechnology, SASTRA Deemed to be University, Tanjore – 613401, Tamil Nadu, India
 

Snakebite is a life-threatening neglected tropical infection reporting high mortality across the world including India. Out of the available yearly statistics, this occupational hazard caused 4.5-5.4 million people and nearly 1,38,000 fatalities were reported globally. Several factors such as the low availability of antivenom, inadequate health centers in rural areas, poor transportation facilities affected the higher number of morbidity and mortality cases of snakebite. The prognostic and diagnostic approach towards the snake bite infection is difficult due to its complexity in venom. The conventional therapy is polyvalent antivenom derived from horses or sheep, with its limitations. Traditional physicians use plants and other herbs as their sustainable remedy for snake bite treatment. Nearly, 523 plant species from 122 families reported their neutralizing property against toxic venom. The secondary metabolites extracted from plants are capable of reducing the toxic effects of the venom. Many research works have reported the inhibitory potential of the plant compounds against the snake venom enzymes. Therefore, there is a necessity for increasing therapeutic studies on plant metabolites and the development of an antidote for the better treatment of snakebite. This review article discusses various herbal plants used for snake bites in India.


Keywords

Antidote, Herbs, Herbal Plants, Secondary Metabolite, Snakebite, Snake Venom.
Font Size

User

Notifications
JOURNAL COVERS
  

  • Gupta YK, Peshin SS. Do herbal medicines have potential for managing snake bite envenomation? Toxicol Int. 2012; 19(2):89–99. https://doi.org/10.4103/0971-6580.97194. PMid:22778503. PMCid:PMC3388772
  • Knudsen C, Jürgensen JA, Føns S, Haack AM, Friis RUW, Dam SH, et al. Snakebite Envenoming Diagnosis and Diagnostics. Front Immunol. 2021; 12:9–12. https:// doi.org/10.3389/fimmu.2021.661457. PMid:33995385. PMCid:PMC8113877
  • Vaiyapuri S, Vaiyapuri R, Ashokan R, Ramasamy K, Nattamaisundar K, Jeyaraj A, et al. Snakebite and its socio-economic impact on the rural population of Tamil Nadu, India. PLoS One. 2013; 8(11):10–3. https://doi. org/10.1371/journal.pone.0080090. PMid:24278244. PMCid:PMC3836953
  • Clare RH, Hall SR, Patel RN, Casewell NR. Small Molecule Drug Discovery for Neglected Tropical Snakebite. Trends Pharmacol Sci. 2021; 42(5):340–53. https://doi. org/10.1016/j.tips.2021.02.005. PMid:33773806
  • Casewell NR, Wagstaff SC, Wus̈ter W, Cook DAN, Bolton FMS, King SI, et al. Medically important dif- ferences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc Natl Acad Sci USA. 2014; 111(25):9205–10. https://doi.org/10.1073/ pnas.1405484111. PMid:24927555. PMCid:PMC4078820
  • Upasani S V., Beldar VG, Tatiya AU, Upasani MS, Surana SJ, Patil DS. Ethnomedicinal plants used for snakebite in India: A brief overview. Integr Med Res. 2017; 6(2):114–30. https://doi.org/10.1016/j.imr.2017.03.001. PMid:28664135. PMCid:PMC5478250
  • Upasani MS, Upasani SV, Beldar VG, Beldar CG, Gujarathi PP. Infrequent use of medicinal plants from India in snake- bite treatment. Integr Med Res. 2018; 7(1):9–26. https:// doi.org/10.1016/j.imr.2017.10.003. PMid:29629287. PMCid:PMC5884010
  • Pullani S, Prabha AL. Plant-Based traditional remedies for snakebite in India: a Recent Update Review. Int J Pharm Sci Res. 2020; 11(11):5322–33.
  • Russell JJ, Schoenbrunner A, Janis JE. Snake bite manage- ment: A scoping review of the literature. Plast Reconstr Surg — Glob Open. 2021; 2021:1–12. https://doi. org/10.1097/GOX.0000000000003506. PMid:33936914. PMCid:PMC8084039
  • David Paul Raj RS, Regi R, Mathew AA, Beena Kanimozhi R. In vitro production of secondary metabolites from Andrographis paniculata and Rawvolfia serpentina against snake venom. Drug Invent Today. 2020; 14(2):179–82.
  • Senji Laxme RR, Khochare S, de Souza HF, Ahuja B, Suranse V, Martin G, et al. Beyond the ‘Big four’: Venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLoS Negl Trop Dis. 2019; 13(12):1–31. https://doi.org/10.1371/journal. pntd.0007899. PMid:31805055. PMCid:PMC6894822
  • Anghore D, Sharma A, Singh S, Kosey S, Jindal S. Treatment of snake bite in India : A Review. Int J Pharm Teach Pract. 2015; 6(4):2635–41.
  • Warrell DA, Gutiérrez JM, Calvete JJ, Williams D. New approaches and technologies of venomics to meet the chal- lenge of human envenoming by snakebites in India. Vol. 138, Indian J Med Res. 2013:38–59.
  • Dissanayake DSB, Thewarage LD, Waduge RN, Ranasinghe JGS, Kularatne SAM, Rajapakse RPVJ. The venom of spec- tacled cobra (Elapidae: Naja naja): In vitro study from Distinct Geographical Origins in Sri Lanka. J Toxicol. 2018; 2018:1–14. https://doi.org/10.1155/2018/7358472. PMid:30363742. PMCid:PMC6180993
  • Williams HF, Layfield HJ, Vallance T, Patel K, Bicknell AB, Trim SA, et al. The urgent need to develop novel strate- gies for the diagnosis and treatment of snakebites. Toxins (Basel). 2019; 11(6):1–29. https://doi.org/10.3390/tox- ins11060363. PMid:31226842. PMCid:PMC6628419
  • Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J, et al. Multifunctional toxins in snake venoms and thera- peutic implications: From pain to hemorrhage and necrosis. Front Ecol Evol. 2019; 7:1–19. https://doi.org/10.3389/ fevo.2019.00218
  • Ojeda PG, Ramírez D, Alzate-Morales J, Caballero J, Kaas Q, González W. Computational studies of snake venom toxins. Toxins (Basel). 2018; 10(1):1–24. https://doi.org/10.3390/ toxins10010008. PMid:29271884. PMCid:PMC5793095
  • Xiao H, Pan H, Liao K, Yang M, Huang C. Snake Venom PLA2, a promising target for broad-spectrum antivenom drug development. Biomed Res Int. 2017; 2017:1–10. https://doi.org/10.1155/2017/6592820. PMid:28758124 PMCid:PMC5512054
  • Bhavya J, Vineetha MS, Sundaram PM, Veena SM, Dhananjaya BL, More SS. Low-molecular weight hyaluronidase from the venom of Bungarus caeruleus (Indian common krait) snake: Isolation and partial characteriza- tion. J Liq Chromatogr Relat Technol. 2016; 39(4):203–8. https://doi.org/10.1080/10826076.2016.1144203
  • Silva A, Maduwage K, Sedgwick M, Pilapitiya S, Weerawansa P, Dahanayaka NJ, et al. Neuromuscular effects of common krait (Bungarus caeruleus) envenoming in Sri Lanka. PLoS Negl Trop Dis. 2016; 10(2):1–18. https:// doi.org/10.1371/journal.pntd.0004368. PMid:26829229. PMCid:PMC4734751
  • Williams SS, Wijesinghe CA, Jayamanne SF, Buckley NA, Dawson AH, Lalloo DG, et al. Delayed psychological mor- bidity associated with snakebite envenoming. PLoS Negl Trop Dis. 2011; 5(8):1–6. https://doi.org/10.1371/journal. pntd.0001255. PMid:21829741. PMCid:PMC3149015
  • KiniRM,FoxJW.Milestonesandfutureprospectsin snake venom research. Toxicon. 2013; 62:1–2. https://doi. org/10.1016/j.toxicon.2012.09.002. PMid:22995211
  • Gouda A, Elnabarawy N, Badawy S. A study of snakebite envenomation cases admitted to egyptian national poi- soning center. Acta Medica Int. 2017; 4(2):34. https://doi. org/10.4103/ami.ami_48_17
  • Dey A, De N jitendra. Traditional Use of Plants Against Snakebite in Indian Subcontinent: a. African J Tradit Complement Altern Med. 2012; 9(1):153–74. https://doi. org/10.4314/ajtcam.v9i1.20. PMid:23983332. PMCid: PMC3746536
  • Jadhav SK KS. Traditional Herbal Medicines for the Treatment of Snake Bite and Scorpion Sting by the Tribes of South Surguja, Chhattisgarh, India. Med Aromat Plants. 2013; 02(01):2012–4. https://doi.org/10.4172/2167- 0412.1000120
  • Ramaswamy M, Duraikannu S, Solaimuthu C. Medicinal plants for the treatment of snakebites among the rural populations of Indian subcontinent: An indication from the traditional use To pharmacological confirmation. J Drug Deliv Ther. 2018; 8(5):62–8. https://doi.org/10.22270/jddt. v8i5.1799
  • Sebastin Santhosh M, Hemshekhar M, Sunitha K, M. Thushara R, Jnaneshwari S, Kemparaju K, et al. Snake Venom induced local toxicities: plant secondary metabolites as an auxiliary therapy. Mini-Reviews Med Chem. 2012; 13(1):106–23. https://doi.org/10.2174/138955713804484730
  • Ashok G, Swaapnil M, Shimpi M. Herbal antidotes for the management of snake bite. World J Pharm Pharm Sci. 2020; 9(1):735–43.
  • Sajon SR, Sana S, Rana S, Sajon SR. Anti-venoms for snake bite: A synthetic and traditional drugs review. J Pharmacogn Phytochem. 2017; 6(63):190–7.
  • Pandikumar P, Chellappandian M, Mutheeswaran S, Ignacimuthu S. Consensus of local knowledge on medicinal plants among traditional healers in Mayiladumparai block of Theni District, Tamil Nadu, India. J Ethnopharmacol. 2011; 134(2):354–62. https://doi.org/10.1016/j.jep.2010.12.027. PMid:21193023
  • Alagesaboopathi C. Ethnomedicinal plants used for the treatment of snake bites by Malayali tribal’s and rural peo- ple in Salem district, Tamil Nadu, India. Int J Biosci. 2013; 3(2):42–53. https://doi.org/10.12692/ijb/3.2.42-53
  • Marandi RR, Britto SJ. Ethnomedicinal plants used by the oraon tribals of latehar district of Jharkhand, India. Asian J Pharm Res. 2014; 4(3):126–33.
  • Singh B, Borthakur SK, Phukan SJ. A survey of ethnomedic- inal plants utilized by the indigenous people of Garo Hills with special reference to the Nokrek Biosphere Reserve (Meghalaya), India. J Herbs Spices Med Plants. 2013; 20:1– 30. https://doi.org/10.1080/10496475.2013.819476
  • Lingaraju DP, Sudarshana MS, Rajashekar N. Ethnopharmacological survey of traditional medici- nal plants in tribal areas of Kodagu district, Karnataka, India. JOPR J Pharm Res. 2013; 6(2):284–97. https://doi. org/10.1016/j.jopr.2013.02.012
  • Mitra S, Mukherjee S. Some plants used as antidote to snake bite in West Bengal, India. Divers Conserv Plants Tradit Knowl. 2012; 2012:515–37.
  • Basha SK, Sudarsanam G. Traditional use of plants against snakebite in sugali tribes of yerramalais of Kurnool dis- trict, Andhra Pradesh, India. Asian Pac J Trop Biomed. 2012; 2(2 Suppl.):S575–9. https://doi.org/10.1016/S2221- 1691(12)60276-7
  • Nautiyal BP, Hazarika TKL. Studies on wild edible fruits of Mizoram, India used as ethno-medicine. Genet Resour Crop Evol. 2012; 59:1767–76. https://doi.org/10.1007/ s10722-012-9799-5
  • Sulochana A, Raveendran D, Krishnamma A, Oommen O. Ethnomedicinal plants used for snake envenom- ation by folk traditional practitioners from Kallar forest region of South Western Ghats, Kerala, India. J Intercult Ethnopharmacol. 2015; 4(1):47–51. https:// doi.org/10.5455/jice.20141010122750. PMid:26401384. PMCid:PMC4566766
  • Singh EA, Kamble SY, Bipinraj NK, Jagtap S. Medicinal plants used by the thakar tribes of Raigad District, Maharastra for the treatment of snake-bite and scorpion- bite. Int J Phytothearpy Res. 2012; 2(2):26–35.
  • Kanneboyena O, Suthari S, Raju VS. Ethnomedicinal Knowledge of inhabitants from Gundlabrahmeswaram Wildlife Sanctuary (Eastern Ghats), Andhra Pradesh, India. Am J Ethnomedicine. 2015; 2(6):333–46.
  • Vijayakumar S, Morvin Yabesh JE, Prabhu S, Manikandan R, Muralidharan B. Quantitative ethnomedicinal study of plants used in the Nelliyampathy hills of Kerala, India. J Ethnopharmacol. 2015; 161:238–54. https://doi. org/10.1016/j.jep.2014.12.006. PMid:25529616
  • Krishna NR, Varma Y, Saidulu C. Ethnobotanical studies of Adilabad District, Andhra Pradesh, India. J Pharmacogn Phytochem. 2014; 18(31):18–36.
  • Das D, Nath D, Das A. Ethnomedicinal plants used by tra- ditional healers of North Tripura. J Ethnopharmacol. 2015; 166:135–48. https://doi.org/10.1016/j.jep.2015.03.026. PMid:25794807
  • Giresha AS, Anitha MG, Dharmappa KK. Phytochemical composition, antioxidant and in-vitro anti-inflammatory activity of ethanol extract of Ruta graveolens L. leaves. Int J Pharm Pharm Sci. 2015; 7(10):272–6.
  • Shah A, Sarvat R, Shoaib S, Ayodele AE, Nadeem M, Qureshi TM, et al. An ethnobotanical survey of medicinal plants used for the treatment of snakebite and scorpion sting among the people of namal valley, Mianwali district, Punjab, Pakistan. Appl Ecol Environ Res. 2018; 16(1):111– 43. https://doi.org/10.15666/aeer/1601_111143
  • Choudhury S, Sharma P, Choudhury MD, Sharma GD. Ethnomedicinal plants used by Chorei tribes of Southern Assam, North Eastern India. Asian Pacific J Trop Dis. 2012; 2(Suppl.1):141–7. https://doi.org/10.1016/S2222- 1808(12)60140-6
  • Gomes A, Das R, Sarkhel S, Mishra R, Mukherjee S, Bhattacharya S, et al. Herbs and herbal constituents active against snake bite. Indian J Exp Biol. 2010; 48(9):865–78.
  • Theakston RDG, Laing GD. Diagnosis of snakebite and the importance of immunological tests in venom research. Toxins (Basel). 2014; 6(5):1667–95.
  • Gutiérrez JM, Warrell DA, Williams DJ, Jensen S, Brown N, Calvete JJ, et al. The Need for full integration of snake- bite envenoming within a global strategy to combat the neglected tropical diseases: The way forward. PLoS Negl Trop Dis. 2013; 7(6):7–9. https://doi.org/10.1371/journal. pntd.0002162. PMid:23785526. PMCid:PMC3681653
  • Knudsen C, Laustsen AH. Recent advances in next gen- eration snakebite antivenoms. Trop Med Infect Dis. 2018; 3(2):1–11. https://doi.org/10.3390/tropicalmed3020042. PMid:30274438. PMCid:PMC6073149
  • Laustsen AH, Karatt-Vellatt A, Masters EW, Arias AS, Pus U, Knudsen C, et al. In vivo neutralization of dendro- toxin-mediated neurotoxicity of black mamba venom by oligoclonal human IgG antibodies. Nat Commun. 2018; 9(1):1–9. https://doi.org/10.1038/s41467-018-06086-4. PMid:30459411. PMCid:PMC6243996
  • Kini RM, Sidhu SS, Laustsen AH. Biosynthetic oligoclonal antivenom (BOA) for snakebite and next-gen- eration treatments for snakebite victims †. Toxins (Basel). 2018;10(12):1–10. https://doi.org/10.3390/toxins10120534. PMid:30551565. PMCid:PMC6315346
  • de Castañeda RR, Durso AM, Ray N, Fernández JL, Williams DJ, Alcoba G, et al. Snakebite and snake identifica- tion: empowering neglected communities and health-care providers with AI. Lancet Digit Heal. 2019;1(5):e202–3. https://doi.org/10.1016/S2589-7500(19)30086-X
  • Puzari U, Mukherjee AK. Recent developments in diagnostic tools and bioanalytical methods for analysis of snake venom: A critical review. Anal Chim Acta. 2020; 1137(xxxx):208–24. https://doi.org/10.1016/j.aca.2020.07.054. PMid:33153604
  • Sanchez-Castro EE, Pajuelo-Reyes C, Tejedo R, Soria-Juan B, Tapia-Limonchi R, Andreu E, et al. Mesenchymal stro- mal cell-based therapies as promising treatments for muscle regeneration after snakebite envenoming. Front Immunol. 2021; 11:1–17. https://doi.org/10.3389/fimmu.2020.609961.
  • PMid:33633730. PMCid:PMC7902043
  • Raghavan S, Jayaraman G. Synergistic effect of flavonoids
  • combined with antivenom on neutralisation of Naja naja venom. Asian Pac J Trop Biomed. 2021; 11(7):298–307. https://doi.org/10.4103/2221-1691.309665
  • Kadam P, Ainsworth S, Sirur FM, Patel DC, Kuruvilla JJ, Majumdar DB. Approaches for implementing soci- ety-led community interventions to mitigate snakebite envenoming burden: The she-india experience. PLoS Negl Trop Dis. 2021; 15(2):1–7. https://doi.org/10.1371/journal. pntd.0009078. PMid:33630848. PMCid:PMC7906396
  • Vaidya SM, Singh AR, Patel VG, Khan NA, Yewale RP, Kale DMK. A review on herbs against snake venom. J Pharmacogn Phytochem. 2018; 7(SP6):5–9. https://doi. org/10.22271/phyto.2018.v7.isp6.1.02
  • Gómez-Betancur I, Gogineni V, Salazar-Ospina A, León F. Perspective on the therapeutics of anti-snake venom. Molecules. 2019; 24(18):1–29. https://doi.org/10.3390/mol- ecules24183276. PMid:31505752. PMCid:PMC6767026
  • Njila MIN, Mahdi E, Lembe DM, Nde Z, Nyonseu D. Review on extraction and isolation of plant secondary metabolites. 7th Int’l Conf Agric Chem Biol Environ Sci; 2017. p. 67–72.
  • Saganuwan SA. Comparative therapeutic index, lethal time and safety margin of various toxicants and snake anti- venoms using newly derived and old formulas. BMC Res Notes. 2020; 13(1):1–7. https://doi.org/10.1186/s13104- 020-05134-x. PMid:32546265. PMCid:PMC7296648
  • Justin K, Edmond S, Ally M, Xin H. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol. 2014; 2:377–92.
  • Singh R. Chemotaxonomy: A tool for plant classification. J Med Plants Stud. 2016; 4(2):90–3.
  • Ahmed E, Arshad M, Zakriyya Khan M, Shoaib Amjad M, Mehreen Sadaf H, Riaz I, et al. Secondary metabolites and their multidimensional prospective in plant life. J Pharmacogn Phytochem. 2017; 6(2):205–14.
  • Makhija IK, Khamar D. Anti-snake venom properties of medicinal plants. Sch Res Libr. 2010; 2(5):399–411.
  • Omara T, Kagoya S, Openy A, Omute T, Ssebulime S, Kiplagat KM, et al. Antivenin plants used for treatment of snakebites in Uganda: Ethnobotanical reports and pharmacological evidences. Trop Med Health. 2020; 48(1):1–16. https://doi.org/10.1186/s41182-019-0187-0. PMid:32071543. PMCid:PMC7014759
  • Bhattacharjee P, Bhattacharyya D. Medicinal plants as snake venom antidotes. J Exp Appl Anim Sci. 2013; 1(1):156–81.
  • Durairaj B, Muthu S, Shreedhar K. In vitro antivenom and antioxidant potential of Vitex negundo leaves (green and blue) against Russell’s viper (Daboia russelli) and Indian cobra (Naja naja) venom. Pelagia Res Libr Eur J Exp Biol. 2014; 4(4):207–19.
  • Gbolade AA. Nigerian medicinal plants with anti-snake venom activity— A review. J Malar Res phytomedicine. 2021; 4:29–44.
  • Chekuri S, Lingfa L, Panjala S, Bindu KCS, Anupalli RR. Acalypha indica L. — An important medicinal plant: A Brief review of its pharmacological properties and restor- ative potential. European J Med Plants. 2020; 31(11):1–10. https://doi.org/10.9734/ejmp/2020/v31i1130294
  • Kothapalli L, Gite PR, Asha T, Rabindra SNN. Evaluation of potential of achyranthes aspera leaves against snake. Int J Pharm Drug Anal. 2016; 4(12):505–13.
  • Amog PU, Manjuprasanna VN, Yariswamy M, Nanjaraj Urs AN, Joshi V, Suvilesh KN, et al. Albizia lebbeck seed metha- nolic extract as a complementary therapy to manage local toxicity of Echis carinatus venom in a murine model. Pharm Biol. 2016; 54(11):2568–74. https://doi.org/10.3109/138802 09.2016.1171882. PMid:27211855
  • Amog PU, Yariswamy M, Vikram J, Urs ANN, Suvilesh KN, Manjuprasanna VN, et al. Local tissue damage induced by Echis carinatus venom: Neutralization by Albizia lebbeck seed aqueous extract in mice model. J Pharm Res. 2016; 10(4):167–75.
  • Ghosh R, Mana K, Sarkhel S. Ameliorating effect of Alstonia scholaris L. bark extract on histopathological changes following viper envenomation in animal models. Toxicol Reports. 2018; 5:988–93. https://doi.org/10.1016/j. toxrep.2018.10.004. PMid:30319940. PMCid:PMC6180435
  • Ghosh R, Sarkhel S, Saha K, Parua P, Chatterjee U, Mana K. Synthesis, characterization and evaluation of venom neutralization potential of silver nanoparticles mediated Alstonia scholaris Linn bark extract. Toxicol Reports. 2021; 8:888–95. https://doi.org/10.1016/j.toxrep.2021.04.006. PMid:33996502. PMCid:PMC8091482
  • Nayak AG, Kumar N, Shenoy S, Roche M. Anti-snake venom and methanolic extract of Andrographis paniculata: A multipronged strategy to neutralize Naja naja venom acetylcholinesterase and hyaluronidase. 3 Biotech. 2020; 10(11):1–12. https://doi.org/10.1007/s13205-020-02462-4. PMid:33083200. PMCid:PMC7561646
  • Sakthivel G, Dey A, Nongalleima K, Chavali M, Rimal Isaac RS, Singh NS, et al. In vitro and in vivo evaluation of polyherbal formulation against Russell’s viper and cobra venom and screening of bioactive components by docking studies. Evidence-based Complement Altern Med. 2013; 2013:1– 12. https://doi.org/10.1155/2013/781216. PMid:23533518. PMCid:PMC3600290
  • Mishra S, Aeri V, Gaur PK, Jachak SM. Phytochemical, therapeutic, and ethnopharmacological overview for a tradi- tionally important herb: Boerhavia diffusa linn. Biomed Res Int. 2014; 2014:1–19. https://doi.org/10.1155/2014/808302. https://doi.org/10.7439/ijbar.v5i1.567
  • Giresha AS, Pramod SN, Sathisha AD, Dharmappa KK. Neutralization of inflammation by inhibiting in vitro and in vivo secretory phospholipase A2 by ethanol extract of Boerhaavia diffusa L. Pharmacognosy Res. 2017; 9(2):174–81
  • Chacko N, Inrahim M SC. Evaluvation of antivenom activ- ity of Calotropis gigantea plant extract against Vipera russelli snake venom. Int J Pharm Sci Res. 2012; 3(07):2272–9.
  • Delmut MB, Parente LML, Paula JR, Conceição EC, Santos AS, Pfrimer IAH, et al. Cassia occidentalis: effect on heal- ing skin wounds induced by Bothrops moojeni in mice. J Pharm Technol Drug Res. 2013; 2(1):1–6. https://doi. org/10.7243/2050-120X-2-10
  • Ricciardi Verrastro B, Maria Torres A, Ricciardi G, Teibler P, Maruñak S, Barnaba C, et al. The effects of Cissampelos pareira extract on envenomation induced by Bothrops diporus snake venom. J Ethnopharmacol. 2018; 212:36–42. https://doi.org/10.1016/j.jep.2017.09.015. PMid:28943445
  • Manonmani S, Madhavan R, Shanmugapriya P, Manjari V, Murugesan VBS. A review of beneficial effects of Siddha medicinal herbs on Snakebite. Int J Curr Res Biol Med. 2016; 1(7):27–35. https://doi.org/10.22192/ijcrbm.2016.01.07.003
  • Kumarapppan C, Jaswanth A, Kumarasunderi K. Antihaemolytic and snake venom neutralizing effect of some Indian medicinal plants. Asian Pac J Trop Med. 2011; 4(9):743–7. https://doi.org/10.1016/S1995- 7645(11)60185-5
  • Bolleddu R, Venkatesh S, Hazra K, Rao MM, Shyamsunder R. Anatomical and antihyperglycemic activity of dichrostachys cinerea roots. Med J DY Patil Vidyapeeth 2020; 13(3):258–63. https://doi.org/10.4103/mjdrdypu. mjdrdypu_95_19
  • Singh P, Yasir M, Khare R, Shrivastava R. Green synthesis of silver nanoparticles using Indian male fern (Dryopteris Cochleata), operational parameters, characterization and bioactivity on Naja naja venom neutralization. Toxicol Res (Camb). 2020; 9(5):706–13. https://doi.org/10.1093/toxres/ tfaa070. PMid:33178431. PMCid:PMC7640931
  • Rehamn and Sultana. Ethnobotanical survey of sariska and siliserh regions from Alwar District of Rajasthan, India. Ethnobot Leafl. 2009; 13:171–88.
  • Gopi K, Renu K, Jayaraman G. Inhibition of Naja naja venom enzymes by the methanolic extract of Leucas aspera and its chemical profile by GC-MS. Toxicol Reports. 2014; 1:667–73. https://doi.org/10.1016/j.toxrep.2014.08.012. PMid:28962280. PMCid:PMC5598287
  • Vijendra N, Kumar KP. Traditional knowledge on ethno- medicinal uses prevailing in tribal pockets of Chhindwara and Betul Districts, Madhya Pradesh, India. African J Pharm Pharmacol. 2010; 4(9):662–70.
  • Minu V, Harsh V, Ravikant T, Paridhi J, Noopur S. Medicinal plants of Chhattisgarh with anti-snake venom property. Int J Curr Pharm Rev Res. 2012; 3(2):1–10.
  • Manjappa B, Gangaraju S, Girish KS, Kemparaju K, Gonchigar SJ, Shankar RL, et al. Momordica charantia seed extract exhibits strong anticoagulant effect by specifi- cally interfering in intrinsic pathway of blood coagulation and dissolves fibrin clot. Blood Coagul Fibrinolysis. 2015; 26(2):191–9.
  • Asad MHH Bin, Razi MT, Durr-e-Sabih, Najamus-Saqib Q, Nasim SJ, Murtaza G, et al. Anti-venom potential of Pakistani medicinal plants: Inhibition of anticoagulation activity of Naja naja karachiensis toxin. Curr Sci. 2013; 105(10):1419–24.
  • Ajisebiola BS, Rotimi S, Anwar U, Adeyi AO. Neutralization of Bitis arietans venom-induced pathophysiological disor- der, biological activities and genetic alterations by Moringa oleifera leaves. Toxin Rev. 2020; 0(0):1–12. https://doi.org/1 0.1080/15569543.2020.1793780
  • Adeyi AO, Ajisebiola BS, Adeyi OE, Adekunle O, Akande OB, James AS, et al. Moringa oleifera leaf fractions attenu- ated Naje haje venom-induced cellular dysfunctions via modulation of Nrf2 and inflammatory signalling path- ways in rats. Biochem Biophys Reports. 2021; 25. https:// doi.org/10.1016/j.bbrep.2020.100890 PMid:33521334. PMCid:PMC7820385
  • Krishnan SA, Dileepkumar R, Nair AS, Oommen OV. Studies on neutralizing effect of Ophiorrhiza mungos root extract against Daboia russelii venom. J Ethnopharmacol [Internet]. 2014; 151(1):543–7. https://doi.org/10.1016/j. jep.2013.11.010. PMid:24280030
  • Taher M, Shaari SS, Susanti D, Arbain D, Zakaria ZA. Genus Ophiorrhiza: A review of its distribution, traditional uses, phytochemistry, biological activities and propagation. Molecules. 2020; 25(11). https://doi.org/10.3390/mole- cules25112611. PMid:32512727. PMCid:PMC7321107
  • Raghavamma STV, Rao NR, Rao GD. Inhibitory poten- tial of important phytochemicals from Pergularia daemia (Forsk.) chiov., on snake venom (Naja naja). J Genet Eng Biotechnol. 2016; 14(1):211–7. https://doi.org/10.1016/j. jgeb.2015.11.002. PMid:30647617. PMCid:PMC6299870
  • Rajesh SS, Elango V, Sivaraman T. In vivo studies on detoxifying actions of aqueous bark extract of prosopis cin- eraria against crude venom from Indian cobra (Naja Naja). Bangladesh J Pharmacol. 2013; 8(4):395–400. https://doi. org/10.3329/bjp.v8i4.16684
  • Sivaraman T, Sreedevi NS, Meenachisundharam S, Vadivelan R. Neutralizing potential of rauvolfia serpen- tina root extract against naja naja venom. Brazilian J Pharm Sci. 2020; 56:1–10. https://doi.org/10.1590/s2175- 97902019000418050
  • Tcheghebe OT, Seukep AJ, Tatong FN. Ethnomedicinal uses, phytochemical and pharmacological profiles, and tox- icity of Sida acuta Burm. f.: A review article. Pharma Innov. 2017; 6(6, Part A):1.
  • Bin Asad MHH, Iqbal M, Akram MR, Khawaja NR, Muneer S, Shabbir MZ, et al. 5′-nucleotidases of Naja naja karachiensis snake venom: Their determination, toxicities and remedial approach by natural inhibitors (medicinal plants). Acta Pol Pharm — Drug Res. 2016; 73(3):667–73.
  • Guo R, Wang T, Zhou G, Xu M, Yu X, Zhang X, et al. Botany, Phytochemistry, pharmacology and toxicity of Strychnos nux-vomica L.: A review. Am J Chin Med. 2018; 46(1):1–23. https://doi.org/10.1142/S0192415X18500015. PMid:29298518

Abstract Views: 192

PDF Views: 84




  • Herbs as Antidote for Snakebite Treatment in India — Traditional Practices and It’s Future Prospects — A Review

Abstract Views: 192  |  PDF Views: 84

Authors

R. S. David Paul Raj
Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore – 641114, Tamil Nadu, India
Alina Ann Mathew
Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore – 641114, Tamil Nadu, India
T. Jesse Joel
Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore – 641114, Tamil Nadu, India
R. Beena Kanimozhi
Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore – 641021, Tamil Nadu, India
H. Agnes Preethy
Department of Biotechnology, SASTRA Deemed to be University, Tanjore – 613401, Tamil Nadu, India

Abstract


Snakebite is a life-threatening neglected tropical infection reporting high mortality across the world including India. Out of the available yearly statistics, this occupational hazard caused 4.5-5.4 million people and nearly 1,38,000 fatalities were reported globally. Several factors such as the low availability of antivenom, inadequate health centers in rural areas, poor transportation facilities affected the higher number of morbidity and mortality cases of snakebite. The prognostic and diagnostic approach towards the snake bite infection is difficult due to its complexity in venom. The conventional therapy is polyvalent antivenom derived from horses or sheep, with its limitations. Traditional physicians use plants and other herbs as their sustainable remedy for snake bite treatment. Nearly, 523 plant species from 122 families reported their neutralizing property against toxic venom. The secondary metabolites extracted from plants are capable of reducing the toxic effects of the venom. Many research works have reported the inhibitory potential of the plant compounds against the snake venom enzymes. Therefore, there is a necessity for increasing therapeutic studies on plant metabolites and the development of an antidote for the better treatment of snakebite. This review article discusses various herbal plants used for snake bites in India.


Keywords


Antidote, Herbs, Herbal Plants, Secondary Metabolite, Snakebite, Snake Venom.

References





DOI: https://doi.org/10.18311/jnr%2F2022%2F28405