The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


South American tomato moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is an invasive pest on tomato and other solanaceous crops. In general, 20 to 30 % yield loss is caused by this pest and sometimes it may result in 100% damage, if timely management interventions are not followed. Though the pest was reported in India during 2014, presently it has spread to several tomato growing states. In the present study various IPM tools have been evaluated against this pest. As a long-term strategy of resistance breeding, genotype screening was carried out for identification of resistance sources from wild and cultivated tomato genotypes showing resistance/tolerance against T. absoluta. Among the evaluated wild and cultivated tomato genotypes, Solanum pennellii (Accession, LA 1940) was identified as a resistant source against T. absoluta both under choice and no-choice bioassays and is being used for resistance breeding. Various entomopathogens (Bacillus thuringiensis, Metarhizium anisopliae, Beauveria bassiana and M. rileyi), egg parasitoids (Trichogramma chilonis, T. pretiosum and Trichogrammatoidea bactrae), light traps, pheromone traps, synthetic insecticides, botanical origin insecticides were also evaluated for their relative efficacy. Among the egg parasitoids T. pretiosum and among synthetic chemicals, spinetoram 12 SC@ 1.25ml/l were found very effective for the management of T. absoluta. Yellow light traps were found as an effective component for integrated management of T. absoluta. Azadirachtin 5% EC at the tested concentrations showed highest mean radial growth (24.67 mm) with relatively less inhibition (16.51%) of M. anisopliae indicating these combinations can be effectively utilised in the eco-friendly management of T. absoluta. We reported natural incidence of M. anisopliae on T. absoluta larvae, causing up to 35 per cent mortality during 2016-17.


Keywords

Entomopathogens, Host Plant Resistance, IPM, Light Traps, Pheromone Traps, Tuta absoluta.
User
Notifications