Open Access Open Access  Restricted Access Subscription Access

Application of Adsorption and Immobilization Techniques to Reduce Hexavalent Chromium Pollution using Banana Peels Residual Biomass as Biosorbent


Affiliations
1 Department of Chemical Engineering, Process Design and Biomass Utilization Research Group (IDAB), University of Cartagena, Cartagena, Bolivar, Colombia
2 Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), University of Cartagena, Cartagena, Bolivar, Colombia
 

Background: Contamination with heavy metal ions has been recognized an important issue that require alternatives to be faced. Adsorption is considered a promising technique to remove these pollutants from aqueous solution. However, disposal problems of polluted biomass have limited its application. Objective: In this work, banana peels biomass is employed as biosorbent for hexavalent chromium uptake. Methods/Statistical Analysis: The effects of particle size, temperature and dosage were considered during adsorption batch experiments. Sorption-desorption cycles were performed in order to analyze the biosorbent useful life. To solve biomass disposal problems, solidification/stabilization immobilization technique was used for heavy metal ions encapsulation through bricks preparation. These bricks were subjected to mechanical resistance and leaching tests to identify if they obey quality and environmental standard. Findings: Results revealed that biosorbent dosage was the parameter that most contributed adsorption process. After sorption-desorption cycles, the biosorbent reduced its removal capacity by 30%. Application/Improvements: The mechanical resistance and leaching tests suggested the applicability of residual biosorbent for preparing bricks due to the low leachate concentration and high compression resistance.
User

  • Jobby R, Jha P, Yadav A, Desai N. Biosorption and biotrans formation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere. 2018; 207:255–66. https://doi.org/10.1016/j.chemosphere.2018.05.050 PMid:29803157
  • Sriram S, Nambi I, Chetty R. Electrochemical reduction of hexavalent chromium on titania nanotubes with urea as ananolyte additive. Electrochimica Acta. 2018, 284, pp. 427-435. https://doi.org/10.1016/j.electacta.2018.07.194
  • Yu X, Yu R, Gui D. Hexavalent chromium induces oxidative stress and mitochondria-mediated apoptosis in isolated skin fibroblasts of Indo-Pacific hump back dolphin. Aquatic Toxicology. 2018; 203:179–86. https://doi.org/10.1016/j.aquatox.2018.08.012 PMid:30153559
  • Vakili M, Deng S, Li T, Wang W, Wang W, Yu G. Novel cross linked chitosan for enhanced adsorption of hexavalent chromium in acidic solution. Chemical Engineering Journal. 2018; 347:782–90. https://doi.org/10.1016/j.cej.2018.04.181
  • Guo B, Liu B, Yang J, Zhang S. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. Journal of Environmental Management. 2017; 193:410–22. https://doi.org/10.1016/j. jenvman.2017.02.026 PMid:28238544
  • Herrera-Barros A, Tejada-Tovar C, Villabona-Ortiz A, Gonzalez-Delgado A, Fornaris-Lozada L. Effect of pH and particle size for lead and nickel uptake from aqueous solution using cassava (Manihot esculenta) and yam (Dioscoreaalata) residual biomasses modified with titanium dioxide nanoparticles. Indian Journal of Science and Technology. 2018; 11(21):1–7. https://doi.org/10.17485/ijst/2018/v11i21/123250
  • Pacheco-Perez K, Baia-Olivares M, MezaGonzalez D, Gonzalez-Delgado AD. Exergy analysis of hydrogen production from palm oil solid wastes using indirect gasification. Indian Journal of Science and Technology. 2018; 11(2):1–6. https://doi.org/10.17485/ijst/2018/v11i2/120429
  • Mahindrakar K, Rathod V. Utilization of banana peels for removal of strontium (II) from water. Environmental Technology and Innovation. 2018; 11:371–83. https://doi.org/10.1016/j.eti.2018.06.015
  • Tejada-Tovar C, Villabona-Ortíz A, Herrera-Barros A, González-Delgado ÁD, Garcés L. Adsorption kinetics of Cr (VI) using modified residual biomass in batch and continuous system. Indian Journal of Science and Technology. 2018; 11(14):1-8. https://doi.org/10.17485/ijst/2018/v11i14/121782
  • Singh S, Parveen N, Gupta H. Adsorptive decontamination of rhodamine-B from water using banana peel powder: A biosorbent. Environmental Technology and Innovation. 2018; 12:189–195. https://doi.org/10.1016/j.eti.2018.09.001
  • Vu H, Scarlett C, Voung Q. Phenolic compounds within banana peel and their potential uses: A review. Journal of Functional Foods. 2018; 40:238–48. https://doi.org/10.1016/j.jff.2017.11.006
  • Lara J, Tejada-Tovar C, Villabona-Ortíz A, Arrieta A. Adsorción de plomo y cadmio en sistema continuo de lecho fijo sobre residuos de cacao (Adsorption of lead and cadmium in continuous of fixed bed on cocoa waste) (Adsorção de chumbo e cádmio no sistema de leitofixocontínua relativa aosresíduos de cacau). Revista ION. 2016; 29:1–13.
  • Tejada-Tovar C, Villabona-Ortiz A, Ruiz-Paternina E. Remoción de Pb (II), Ni (II) y Cr (VI) en soluciones acuosas usando matrices modificadas químicamente. Prospectiva. 2014; 12(2):7–17. https://doi.org/10.15665/rp.v12i2.265
  • Mata Y, Blázquez M, Ballester A, González F, Mu-oz J. Studies on sorption, desorption, regeneration and reuse of sugar-beet pectin gels for heavy metals removal. Journal of Hazardous Materials. 2010; 178:243–8. https://doi.org/10.1016/j. j hazmat.2010.01.069 PMid:20122797
  • Ngo H, Abdolali A, Wenshan G. Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies. Bioresource Technology. 2015; 193:477–87. https://doi.org/10.1016/j.biortech.2015.06.123 PMid:26162526
  • Arsenovic M, Radojevic Z, Stankovic S. Removal of toxic metals from industrial sludge by fixing in brick structure. Construction and Building Materials. 2012; 37:7–14. https://doi.org/10.1016/j.conbuildmat.2012.07.002
  • Ukwatta P, Mohajerani A. Effect of organic content in biosolids on the properties of firedclay bricks incorporated with biosolids. Journal of Materials in Civil Engineering. 2017; 29(7):1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001865
  • Tejada-Tovar C, Tejeda L, Marimón W, Villabona-Ortíz A. Estudio de modificación química y física de biomasa (Citrus sinensis y Musa paradisiaca) para la adsorción de metales pesados en solución. Revista Luna Azul. 2014; 39:124–42. https://doi.org/10.17151/luaz.2014.39.8
  • Velasco S. Remoción de plomo presente en soluciones acuosas mediante adsorción con residuos del plátano Musa AAB Simonds. Universidad Libre; 2014. p. 1–58.
  • Eggs N, Salvarezza S, Azario R, Fernández N, García M. Adsorcioón de cromo hexavalente en la cáscara de arroz modificada químicamente. Avances en Ciencias e Ingeniería; 2010. p. 141–51.
  • Armas E, Guevara A. Biosorción de cromo total en soluciones ideales utilizando una matriz de mircroalgas nativas inmovilizadas en alginato cálcico. D Space Repository; 2017.
  • Da’na E, Awad A. Regeneration of spent activated carbon obtained from home filtration system and applying it for heavy metals adsorption. Journal of Environmental Chemical Engineering. 2017; 5(4):3091–9. https://doi.org/10.1016/j.jece.2017.06.022
  • Chonjnacka K, Chonjnacki A, Górecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulin asp.: kinetics, equilibrium and the mechanism of the process. Chemosphere. 2005; 59(1):75–84. https://doi.org/10.1016/j.chemosphere.2004.10.005 PMid:15698647
  • Rodríguez R, Linares R, Guadalupe E. Adsorción y desorción de cromo hexavalente en relaves mineros. Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalurgica y Geográfica. 2009; 12(24):1–9.
  • Díaz C, Jacinto C, Medina R, Navarro A, Cuizano N, Llanos B. Estudio de la biosorcion de cromo (VI) con quitosano cuaternario reticulado para su aplicación en biorremediación de aguas contaminadas. Revista de la Sociedad Química del Perú. 2013; 79:304–18.
  • NTC. 4017: Métodos Para Muestreo Y Ensayos de Unidades de Mampostería Y Otros Productos de Arcilla. Available from: https://www.libreriadelau.com/ ntc-4017-metodos-para-muestreo-y-ensayos-de-unidadesdemamposteria-y-otros-productos-de-arcilla-icontecnullingenieria-civil/p
  • Ministerio de Ambiente. Decreto 4741 de 2005: Por El Cual Se Reglamenta Parcialmente La Prevención Y Manejo de Los Residuos O Desechos Peligrosos Generados En El Marco de La Gestión Integral. Available from: http://www.ideam.gov.co/documents/51310/526371/Decreto+4741+2005+PREVENCION+Y+MANEJO+DE+REIDUOS+PELIGROSOS+GENERADOS+EN+GESTION+INTEGRAL.pdf/491df435-061e-4d27-b40f-c8b3afe25705

Abstract Views: 224

PDF Views: 0




  • Application of Adsorption and Immobilization Techniques to Reduce Hexavalent Chromium Pollution using Banana Peels Residual Biomass as Biosorbent

Abstract Views: 224  |  PDF Views: 0

Authors

Angel Villabona-Ortiz
Department of Chemical Engineering, Process Design and Biomass Utilization Research Group (IDAB), University of Cartagena, Cartagena, Bolivar, Colombia
Candelaria Tejada-Tovar
Department of Chemical Engineering, Process Design and Biomass Utilization Research Group (IDAB), University of Cartagena, Cartagena, Bolivar, Colombia
Angel Gonzalez-Delgado
Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), University of Cartagena, Cartagena, Bolivar, Colombia
Erika Ruiz-Paternina
Department of Chemical Engineering, Process Design and Biomass Utilization Research Group (IDAB), University of Cartagena, Cartagena, Bolivar, Colombia
Norida Pajaro-Gomez
Department of Chemical Engineering, Process Design and Biomass Utilization Research Group (IDAB), University of Cartagena, Cartagena, Bolivar, Colombia

Abstract


Background: Contamination with heavy metal ions has been recognized an important issue that require alternatives to be faced. Adsorption is considered a promising technique to remove these pollutants from aqueous solution. However, disposal problems of polluted biomass have limited its application. Objective: In this work, banana peels biomass is employed as biosorbent for hexavalent chromium uptake. Methods/Statistical Analysis: The effects of particle size, temperature and dosage were considered during adsorption batch experiments. Sorption-desorption cycles were performed in order to analyze the biosorbent useful life. To solve biomass disposal problems, solidification/stabilization immobilization technique was used for heavy metal ions encapsulation through bricks preparation. These bricks were subjected to mechanical resistance and leaching tests to identify if they obey quality and environmental standard. Findings: Results revealed that biosorbent dosage was the parameter that most contributed adsorption process. After sorption-desorption cycles, the biosorbent reduced its removal capacity by 30%. Application/Improvements: The mechanical resistance and leaching tests suggested the applicability of residual biosorbent for preparing bricks due to the low leachate concentration and high compression resistance.

References





DOI: https://doi.org/10.17485/ijst%2F2018%2Fv11i42%2F132080