The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Objectives: SCADA systems are turning into the central nerve system of the electric power system critical infrastructure. With the increasing availability and use of computer networks and the Internet as well as the convenience of cloud computing, SCADA systems have increasingly adopted Internet-of-Things technologies to significantly reduce infrastructure costs and increase ease of maintenance and integration. However, SCADA systems are obvious targets for cyber attacks that would seek to disrupt the critical infrastructure systems thus are governed by a SCADA system. Methods/Statistical Analysis: Cyber attacks exploit SCADA security vulnerabilities in order to take control or disrupt the normal operation of the system. Analyzing security vulnerability and loopholes are critical in developing security solutions for such systems. It is also equally important to test security solutions developed to protect SCADA systems. Findings: Experimenting on live systems is generally not advisable and impractical as this may render the system unstable. Such situation calls for the need of an experimental setup equivalent or quite close to the real scenario for developing and testing security solutions. Application/Improvements: This paper reviews common SCADA implementation approaches utilized in previous related works.

Keywords

Cyber Attacks, Industrial Control, Power Systems, SCADA Systems, Security, Testbed.
User