Open Access Open Access  Restricted Access Subscription Access

Simulation and Analysis of Lead based Perovskite Solar Cell using SCAPS-1D


Affiliations
1 Department of Physics, Madanapalle Institute of Technology and Science, Madanapalle - 517325, Chittoor, Andhra Pradesh, India
2 Department of Physics, JNTU College of Engineering Pulivendula - 516390, Andhra Pradesh, India
 

Objectives: Perovskite photovoltaic’s are getting to be distinctly predominant option for the conventional solar cells achieving a maximum efficiency of 22.1%. This work is concerned about the design and analyses of lead-based perovskite solar cell model with the flexible architecture of lass/FTO/PCBM/CH3NH3PbI3/PEDOT:PSS/Ag. Method/Analysis: The analysis of solar cell architecture is done using the Solar Cell Capacitance Simulator(SCAPS). It is a computer-based software tool and is well adapted for the analyses of homo and heterojunctions, multi- junctions and Schottky barrier photovoltaic devices. This software tool runs and simulates based on the Poisson’s and continuity equation of electrons and holes. For this model, it is used to optimize the various parameters such as thickness, the defect density of absorber layer, doping concentrations(ND and NA) of Electron Transport Material (ETM) and Hole Transport Material (HTM). Findings: The thickness of CH3NH3PbI3varied from 0.1μm to 0.6μm and the best results are observed at 0.3μm. The total defect density of the absorber varied from 1013 cm-3 to 1018 cm-3 and the minimum defect density of absorber layer is predicted as 1014cm-3. The ND or NA of the HTM and ETM varied from 1014 to 1019 cm-3and the PCE is maximum when ND and NA both kept at 1019cm-3. By tuning the thickness of absorber layer and doping concentrations, the predicted results are as follows; maximum power conversion efficiency(PCE)31.77%, short circuit current density (Jsc) 25.60 mA/cm2, open circuit voltage(Voc) 1.52V, fill factor(FF) 81.58%. Improvements: With this proposed simulated model, the efficiency of the perovskite solar cell reaches to the 31%, which is an improvement of 4-5%, to the previous models, with the optimization of few material parameters. Hence this simulation work will provide the handy information in fabricating perovskite solar cells to reasonably choose material parameters and to achieve the high efficiency.

Keywords

Solar Cell, Perovskite, simulation, SCAPS, Efficiency
User

Abstract Views: 195

PDF Views: 0




  • Simulation and Analysis of Lead based Perovskite Solar Cell using SCAPS-1D

Abstract Views: 195  |  PDF Views: 0

Authors

Usha Mandadapu
Department of Physics, Madanapalle Institute of Technology and Science, Madanapalle - 517325, Chittoor, Andhra Pradesh, India
S. Victor Vedanayakam
Department of Physics, Madanapalle Institute of Technology and Science, Madanapalle - 517325, Chittoor, Andhra Pradesh, India
K. Thyagarajan
Department of Physics, JNTU College of Engineering Pulivendula - 516390, Andhra Pradesh, India

Abstract


Objectives: Perovskite photovoltaic’s are getting to be distinctly predominant option for the conventional solar cells achieving a maximum efficiency of 22.1%. This work is concerned about the design and analyses of lead-based perovskite solar cell model with the flexible architecture of lass/FTO/PCBM/CH3NH3PbI3/PEDOT:PSS/Ag. Method/Analysis: The analysis of solar cell architecture is done using the Solar Cell Capacitance Simulator(SCAPS). It is a computer-based software tool and is well adapted for the analyses of homo and heterojunctions, multi- junctions and Schottky barrier photovoltaic devices. This software tool runs and simulates based on the Poisson’s and continuity equation of electrons and holes. For this model, it is used to optimize the various parameters such as thickness, the defect density of absorber layer, doping concentrations(ND and NA) of Electron Transport Material (ETM) and Hole Transport Material (HTM). Findings: The thickness of CH3NH3PbI3varied from 0.1μm to 0.6μm and the best results are observed at 0.3μm. The total defect density of the absorber varied from 1013 cm-3 to 1018 cm-3 and the minimum defect density of absorber layer is predicted as 1014cm-3. The ND or NA of the HTM and ETM varied from 1014 to 1019 cm-3and the PCE is maximum when ND and NA both kept at 1019cm-3. By tuning the thickness of absorber layer and doping concentrations, the predicted results are as follows; maximum power conversion efficiency(PCE)31.77%, short circuit current density (Jsc) 25.60 mA/cm2, open circuit voltage(Voc) 1.52V, fill factor(FF) 81.58%. Improvements: With this proposed simulated model, the efficiency of the perovskite solar cell reaches to the 31%, which is an improvement of 4-5%, to the previous models, with the optimization of few material parameters. Hence this simulation work will provide the handy information in fabricating perovskite solar cells to reasonably choose material parameters and to achieve the high efficiency.

Keywords


Solar Cell, Perovskite, simulation, SCAPS, Efficiency



DOI: https://doi.org/10.17485/ijst%2F2017%2Fv10i11%2F151485