The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Objectives:Turbulent Drag Reduction (DR) efficacy of diesel fuelin a Rotating Disk Apparatus (RDA) using anionic surfactant of Sodium Lauryl Ether Sulfate (SLES) was investigated with smooth andSV-groove disks(riblets height of 900 and 3100 μm). Methods: The DR efficacy indicates how the torque is being reduced with a tiny amount of additives under a turbulent flow at a Reynolds number (Re) range of 302227 to 453341. The effects of different variables such as rotary disk type (smooth or structured), surfactant concentration, and Reynolds number were also studied. Findings: SLES shows a good ability to reduce the frictional drag forces with smooth and SV-groove of height 3100μm. In contract, there is no drag reduction can be observed by using this surfactant with SV-groove of height 900 μm. Application/Improvements: The passive-active interaction method can be used to improve petroleum liquid flow in pipelines.

Keywords

Drag Reduction, Rotating Disk Apparatus, Passive-Active Interaction, Surfactant
User