Open Access Open Access  Restricted Access Subscription Access

An Efficient Decentralized Control Strategy Applied to an Interconnected Multi-Machine Electric Power Grid


Affiliations
1 Faculty of Automation Technology, Electric Power University, Hanoi, Viet Nam
2 Institute of Information Technology, Hanoi, Viet Nam
 

Background/Objectives: It is essential to design an efficient decentralized control strategy to deal with the stability against various disturbances in a practical electric power interconnection with nonlinearities and uncertainties. Methods: This paper presents theoretically a decentralized control strategy which is appropriately applied to an interconnected power system. Such an electric power grid is mathematically modeled first, then the design of an efficient control scheme for a stabilized solution will be presented. Finally, the feasibility and superiority of the proposed approach will be verified through various simulation cases using MATLAB/Simulink platform for a typical three-machine electric power system. Findings: It should be obviously found that a practical multi-area electric power network, which is considered to be a typical example of large-scale systems, composes of many synchronous generators. These machines are strongly interconnected via a number of nonlinearities such as parameters of transmission lines, thereby this feature brings a big challenge to the modeling of the network and the design of an efficient control strategy for an electric power interconnection in order to ensure its stability and reliability. Decentralized control strategies have been applied to be more suitable for tackling the stabilization problem of such an interconnected power grid in comparison with the centralized control scheme. In the present paper, an efficient linear decentralized control methodology based on a number of modified Riccati equations to calculate a proper feedback control law will be studied as a typically feasible candidate to this issue. The promising simulation results obtained in a three-machine interconnected power system model with various cases of initial conditions are quite able to demonstrate the superiority of the proposed control methodology. Application/Improvements: The proposed decentralized control strategy is successfully applied to a three-machine electric power interconnection model as a typical case study. Hence, this control methodology can afford to be efficiently adopted to a practical power network.

Keywords

Large-Scale System, Modeling, Decentralized Control Strategy, Multi-Machine Interconnected Power System, Stabilization Problem.
User

Abstract Views: 143

PDF Views: 0




  • An Efficient Decentralized Control Strategy Applied to an Interconnected Multi-Machine Electric Power Grid

Abstract Views: 143  |  PDF Views: 0

Authors

Vu Duy Thuan
Faculty of Automation Technology, Electric Power University, Hanoi, Viet Nam
Nguyen Ngoc Khoat
Faculty of Automation Technology, Electric Power University, Hanoi, Viet Nam
Thai Quang Vinh
Institute of Information Technology, Hanoi, Viet Nam

Abstract


Background/Objectives: It is essential to design an efficient decentralized control strategy to deal with the stability against various disturbances in a practical electric power interconnection with nonlinearities and uncertainties. Methods: This paper presents theoretically a decentralized control strategy which is appropriately applied to an interconnected power system. Such an electric power grid is mathematically modeled first, then the design of an efficient control scheme for a stabilized solution will be presented. Finally, the feasibility and superiority of the proposed approach will be verified through various simulation cases using MATLAB/Simulink platform for a typical three-machine electric power system. Findings: It should be obviously found that a practical multi-area electric power network, which is considered to be a typical example of large-scale systems, composes of many synchronous generators. These machines are strongly interconnected via a number of nonlinearities such as parameters of transmission lines, thereby this feature brings a big challenge to the modeling of the network and the design of an efficient control strategy for an electric power interconnection in order to ensure its stability and reliability. Decentralized control strategies have been applied to be more suitable for tackling the stabilization problem of such an interconnected power grid in comparison with the centralized control scheme. In the present paper, an efficient linear decentralized control methodology based on a number of modified Riccati equations to calculate a proper feedback control law will be studied as a typically feasible candidate to this issue. The promising simulation results obtained in a three-machine interconnected power system model with various cases of initial conditions are quite able to demonstrate the superiority of the proposed control methodology. Application/Improvements: The proposed decentralized control strategy is successfully applied to a three-machine electric power interconnection model as a typical case study. Hence, this control methodology can afford to be efficiently adopted to a practical power network.

Keywords


Large-Scale System, Modeling, Decentralized Control Strategy, Multi-Machine Interconnected Power System, Stabilization Problem.



DOI: https://doi.org/10.17485/ijst%2F2016%2Fv9i22%2F134421