The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Objectives: A universal low cost activated carbon adsorbent (WTAC) is prepared from waste tire are used to optimize the process parameters and maximize removal of cadmium from effluents. Methods/Statistical Analysis: Applying Response Surface Methodology (RSM), optimized the process parameters and interaction effects of adsorptive parameters on adsorption efficiency by regression and ANOVA analysis. Findings: Based on the statistical approach the experimental results were analyzed and the optimum process conditions are identified as pH:7.56, Co: 3.57 mg/L, w:0.1 grams and T:315.94K. The square model (F = 614.52 and P = 0.00) and Linear (F = 1682.39 and P = 0.018) model terms highly significant effect than interactive (F = 24.39 and P = 0.27) model terms. Based on high ‘t’- and low ‘P’ value (< 0.05), both the linear terms and the squared terms, i.e., pH (x1), Co(x2), w (x3) and T (x4), show significant effect; while in front of interaction effects, x2x4 are found to be significant effect and other interactions are to be insignificant on the percentage of Cd removal. Equilibrium data were well interpreted by Langmuir model, and the maximum amount of Cd deposited on the WTAC adsorbent surface is 2.59 mg/g at 313 K. The adsorption efficiency of CD onto WTAC adsorbent increases with increasing temperature of the solution. The variation of thermodynamic energy parameters (ΔGo, ΔHo and ΔSo) with effluent temperature described that the adsorption process is endothermic, spontaneous at high temperatures and non-spontaneous at low temperatures. These condorder kinetics are feasible for a Cd adsorption process using WTAC adsorbent. Application/Improvements: WTAC, when utilized under the process conditions, may be a viable and effective treatment for Cd removal from industrial effluents.

Keywords

Adsorption Isotherms, Cadmium, Central Composite Design (CCD), Kinetics, Thermodynamic Studies, WTAC.
User