The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Objectives: Heart of the transmission system in most machineries are gears for efficient power transmission. Even minor faults in gear can lead to major losses in terms of energy as well as in terms of money. The unwanted by-product while operating gear box are vibration and acoustic signals, which can be used for the condition monitoring and fault diagnosis of the gearbox. This study proposes the usage of machine learning algorithm for condition monitoring of a helical gearbox by using the acoustic signals produced by the gearbox. Methods/Analysis: The acoustic signals were captured using microphone from a gearbox with artificially created fault conditions. A comprehensive study was carried out using different discrete wavelet transformations for feature extraction which was further used in generating J48 decision tree algorithm and subsequently it was employed for selection and classification of the extracted features. Finding: Through this study the classification accuracy obtained is 97.619% by varying the different parameter to achieve the highest accuracy level. Data used in this study is exclusively obtained through experiment and subsequently through J48 decision tree and random tree classification accuracy level is studied to accomplish the highest accuracy. Novelty/Improvements: The comparison of different discrete wavelet transforms of the acoustic signals proved Daubechies 5 Discrete Wavelet Transform is the best suited one to use. The methodology yielded a satisfactory classification accuracy of 97.619%, which is higher than what was obtained by similar experiments with different methodology till date. The results and their analysis is discussed in the study. The performance of this methodology may be further improved by using different classifiers.

Keywords

Acoustic Signals, Gearbox, J48 Decision Tree, Random Tree, Wavelets
User