Open Access Open Access  Restricted Access Subscription Access

Experimental Study of Tool Path Strategies for Three and Five axes Milling along with Feed Rate Optimization


Affiliations
1 Mechanical Engineering Department, University of Birjand, Birjand, South Khorasan, Iran, Islamic Republic of
2 Department of Mechanical Engineering, Faculty of Engineering, Islamic Azad University Najafabad Branch, Najafabad, Iran, Islamic Republic of
3 Petroleum Research Engineering, Islamic Azad University Science and Research Branch Tehran, Tehran, Iran, Islamic Republic of
 

Objectives: Nowadays, owning to the growth of industries, precise, rapid and efficient production of the parts with complex surfaces seems to be essential. Methods: In numerical control machine tools, the choice of tool path strategy in computer-aided manufacturing software plays an important role in determining the distance of tool movement, the collision between the tool and the work piece and the number of axes used in each stage of the machining operation. Optimal selection of tool path and its peripheral settings can cause dramatic changes in the improvement of time and the increase of machining operation precision. Results: This research aims at evaluating different tool path strategies in multi-axes machining in order to select the best strategies in different situations. In this regard, Power Mill software, as computer-aided manufacturing software is used to investigate different tool path strategies of three-axes and fiveaxis milling. These strategies were implemented on different models and, then, machining operation and optimization of NC programs were simulated in Vericut software. Finally, after performing three-axis machining experimental tests and simulating three-axis and five-axis machining, different tool path strategies were compared in terms of machining time and the average residual load per unit area. Then, according to the results, the optimal strategy for each geometric model was selected based on different machining conditions. Conclusion: Evaluations show that variable and optimized feed rate in different tool path strategies makes their machining time closer to each other.

Keywords

CAD/CAM, Complex Surfaces, Multi-Axis Machining, Simulation of Machining Operation.
User

Abstract Views: 208

PDF Views: 0




  • Experimental Study of Tool Path Strategies for Three and Five axes Milling along with Feed Rate Optimization

Abstract Views: 208  |  PDF Views: 0

Authors

Hamid Ramazani Sales
Mechanical Engineering Department, University of Birjand, Birjand, South Khorasan, Iran, Islamic Republic of
Hossein Amirabadi
Mechanical Engineering Department, University of Birjand, Birjand, South Khorasan, Iran, Islamic Republic of
Hossein Nouri Hosseinabadi
Department of Mechanical Engineering, Faculty of Engineering, Islamic Azad University Najafabad Branch, Najafabad, Iran, Islamic Republic of
Mohammad Reza Bagheri
Petroleum Research Engineering, Islamic Azad University Science and Research Branch Tehran, Tehran, Iran, Islamic Republic of

Abstract


Objectives: Nowadays, owning to the growth of industries, precise, rapid and efficient production of the parts with complex surfaces seems to be essential. Methods: In numerical control machine tools, the choice of tool path strategy in computer-aided manufacturing software plays an important role in determining the distance of tool movement, the collision between the tool and the work piece and the number of axes used in each stage of the machining operation. Optimal selection of tool path and its peripheral settings can cause dramatic changes in the improvement of time and the increase of machining operation precision. Results: This research aims at evaluating different tool path strategies in multi-axes machining in order to select the best strategies in different situations. In this regard, Power Mill software, as computer-aided manufacturing software is used to investigate different tool path strategies of three-axes and fiveaxis milling. These strategies were implemented on different models and, then, machining operation and optimization of NC programs were simulated in Vericut software. Finally, after performing three-axis machining experimental tests and simulating three-axis and five-axis machining, different tool path strategies were compared in terms of machining time and the average residual load per unit area. Then, according to the results, the optimal strategy for each geometric model was selected based on different machining conditions. Conclusion: Evaluations show that variable and optimized feed rate in different tool path strategies makes their machining time closer to each other.

Keywords


CAD/CAM, Complex Surfaces, Multi-Axis Machining, Simulation of Machining Operation.



DOI: https://doi.org/10.17485/ijst%2F2016%2Fv9i43%2F123476