The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Background/Objectives: In order to increase spectral efficiency and lower handover signaling overhead in long term evolution network, load balancing optimisation and ping-pong handover avoidance is important. Methods/Statistical Analysis: Here, an algorithm that uses an adaptive timer was developed to run on the network. The network comprises of seven cells numbered 1, 2, 3, 4, 5, 6 and 7 respectively. Each cell is powered by a centrally placed cell equipped with omni-directional antennas to covers its cell area and neighboring cell-edge users. Receive signal strength and cell load estimates were jointly used to model the handover adaptive timer for decision accuracy. Findings: Findings were made the validation of the Key Performance Indicators (KPIs) using computer simulations. The KPIs of attention in this research were load balancing index of the network, number of unsatisfied users, cumulative number of ping-pong handover request, cumulative number of non-ping-pong handover request and average throughput of the cell. The results of our proposal out perform two other references cited in literature. In terms of load distribution index specifically, a 95% level was achieved after only 150 load balancing cycles. Conclusion/Improvements: The propose solution proves great for its ability to effectively detect ping-pong handover request and non-ping-pong handover request while load balancing decision process is in progress.

Keywords

Adaptive Timer, Load Balancing, Long Term Evolution, Ping-Pong Handover, Self-Organising Network
User