The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


This paper presents new finite element method (FEM) based approach for radio frequency (RF) and crosstalk (X talk) characterization of chip interconnects. Being based on scattering parameters (S-parameters), this approach truly and accurately demonstrates the transmission line behavior of chip interconnects over a wideband of frequencies. To demonstrate FEM based method, a single-line and a 3-line interconnect test structures on SiO2-Si substrate have been designed and simulated in High Frequency Structure Simulator (HFSS). The RF and crosstalk characterization of chip interconnect materials Copper (Cu), doped multilayer Graphene Nanoribbon (DMLGNR), and neutral multilayer Graphene Nanoribbon (NMLGNR) have been demonstrated in terms of transmission coefficient (Sij & Smn) from 1 to 1000 GHz. The single-line three-dimensional (3D) structures comprising of Cu, DMLGNR, and NMLGNR have maximum transmission loss values of -15.93 dB, -22.03 dB, and - 13.73 dB at frequencies of 643 GHz, 402 GHz, and 643 GHz, respectively whereas three-line bus structure exhibit maximum victim-line transmission loss values of -15.28 dB, -17.47 dB, and -15.98 dB at frequencies of 247 GHz, 829 GHz, and 377 GHz, respectively. Further, the crosstalk results have demonstrated that as frequency increases significant crosstalk is observed between nearby lines due to electromagnetic interference and coupling (EMI/EMC) issues.

Keywords

Crosstalk, EMI, EMC, Finite Element Method, HFSS, IC.
User
Notifications
Font Size