The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Inconel 625 (IN625), since its invention, has been a material of choice for industries where components in service conditions are exposed to extremely high temperatures, corrosion, and oxidation environments. As per the American welding society for butt-joining such alloys in sheets, non-traditional techniques are the best means for producing permanent joints. These techniques require high-cost setup and high maintenance costs which are only economical for high-volume assembly line fabrication in mass-production facilities. Therefore, Tungsten Inert Gas (TIG) welding is highly suitable for producing defect-free autogenous weldments in high-strength alloy sheets with a thickness below 3mm. The current work focuses on the experimental investigation of the TIG welding of Inconel 1mm sheets. In this work, mechanical properties and microstructure are studied for controlled heat input of TIG welding. Current is varied from 40A to 65A and voltage from 10V to 12V. Only three combinations of parameters show sound weld visually and are analyzed by performing various testing. The main objective of the study is to find the feasible process parameters for the micro joining of IN625 sheets. From this discussion, it appears that arc energy, welding current, and voltage significantly affect the quality of the weld.

Keywords

Tungsten Inert Gas (TIG) Welding, Inconel 625 (IN625), Arc Energy, Welding Current, Voltage.
User
Notifications
Font Size