The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Background/Objective: Barley has its own immunity but not sufficiently effective. Pathogenesis Related protein (PR5) of barley has anti-fungal properties which releases in result of virulence factor Candidate for Secreted Effector Proteins (CSEP0064) of B. graminis. The objective of this study is to generate molecular models of PR5 and CSEP0064 and to dock them for understanding the role PR5 in immunity of barley against CSEP0064 released during powdery mildew infection.

Methods/Statistical analysis: PR5 and CSEP0064 molecular interaction gives insight in the immunity of barley. In this study, we generate the molecular models of PR5 and CSEP0064 through Easy Modeller 4.0, further refinement of model from SAVES server, RAMPAGE, 3D refine srver and HexDocking Server was used for their mutual interaction study nd generation of PR5-CSEP0064 complex.

Findings: The interaction between PR5 and CSEP0064 molecular models were studied for the first time proving the role of PR5 and CSEP0064 in barley immunity. This study shows the complex formed between PR5 and CSEP0064 through bioinformatics tools. The complex is formed with 619.9 kCal/mol e-value which represents the requirement of very high energy for breaking the bond between two molecules.

Application/Improvements: Various factors affect crop quality and yield of barley. Various CSEPs are released during and after haustoria formation in barley. Blumeria graminis affects the barley as it causes powdery mildew disease. Therefore, biologists are continuously working towards the plant immunity and control of diseases.


Keywords

Hordeum vulgare, Blumeria graminis, CSEP0064, Modeling, PR5.
User
Notifications