Open Access Open Access  Restricted Access Subscription Access

Effect of Solution pH on the Kinetic Adsorption of Methylene Blue by Sugarcane Bagasse Biochar Under a Magnetic Field


Affiliations
1 Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
 

Sugarcane bagasse, an agricultural waste biomass was used to prepare biochar by pyrolyzing the biomass under oxygen-limited conditions. The prepared biochar was used for the adsorptive removal of a cationic dye methylene blue (MB) under a magnetic field. It was found that the existence of the external magnetic field had significantly enhanced the uptake of MB onto the bagasse biochar. The increased biochar dosage actually declined the uptake of MB while the effect of the magnetic field was still significant. The adsorption kinetics was investigated under different solution pH conditions. The experimental data were simulated using non-linear pseudo-first-order, pseudo-second-order and Elovich kinetic models. The Elovich kinetic model was found to be more suitable to describe the adsorption kinetics. This indicates that the adsorption of MB onto BC400 is a chemisorption process in which the rate-determining step is diffusion in nature. The uptake of MB is mainly attributed to the π-π electron-donor-acceptor interaction and electrostatic attraction.

Keywords

Biochar, Methylene Blue, Adsorption Kinetics, Bagasse, Magnetic Field.
User
Notifications
Font Size


  • Aharoni, C., Sparks, D.L. and Levinson, S. 1991. Kinetics of soil chemical reactions: Relationships between empirical equations and diffusion models. Soil. Sci. Soc. Am. J., 55: 1307-1312.
  • Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S. and Ok, Y.S. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99: 19-33.
  • Das, L., Kolar, P., Classen, J.J. and Osborne, J.A. 2013. Adsorbents from pine wood via K2CO3-assisted low temperature carbonization for adsorption of p-cresol. Ind. Crops Prod., 45: 215-222.
  • Gupta, V.K. Suhas 2009. Application of low-cost adsorbents for dye removal-A review. J. Environ. Manage., 90(8): 2313-2342.
  • Han, R.P., Wang, Y.F., Han, P., Shi, J., Yang, J. and Lu, Y.S. 2006. Removal of methylene blue from aqueous solution by chaff in batch mode. J. Hazard. Mater., 137(1): 550-557.
  • Ho,Y.S. and McKay, G. 1999. Pseudo-second-order model for sorption process. Process Biochem., 34(5): 451-465.
  • Jing, X.R., Wang, Y.Y., Liu, W.J., Wang, Y.K. and Jiang, H. 2014. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chem. Eng. J., 248: 168-174.
  • Keiluweit, M., Nico, P.S., Johnson, M.G. and Kleber, M. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol., 44: 1247-1253.
  • Kithome, M., Paul, J.W., Lavkulich, L.M. and Bomke, A.A. 1988. Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite. Soil Sci. Soc. Am. J., 62: 622-629.
  • Lagergren, S. 1998. Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlinga, 24(4): 1-39.
  • Lee, J.W., Hawkins, B., Day, D.M. and Reicosky, D.C. 2010. Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration. Energ. Environ. Sci., 3(11): 1695-1705.
  • Lehmann, J. 2007. A handful of carbon. Nature, 447: 143-144.
  • Patkowski, J., Myoeliwiec, D. and Chibowski, S. 2014. Adsorption of polyethyleneimine (PEI) on hematite. Influence of magnetic field on adsorption of PEI on hematite. Materials Chemistry and Physics, 144(3): 451-461.
  • Pavlatou, A. and Polyzopouls, N.A. 1988. The role of diffusion in the kinetics of phosphate desorption: the relevance of the Elovich equation. J. Soil. Sci., 39(3): 425-436.
  • Teixidó, M., Pignatello, J.J., Beltrán, J.L., Granados, M. and Peccia, J. 2011. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ. Sci. Technol., 45: 10020-10027.
  • Vadivelan, V. and Kumar, K.V. 2005. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interf. Sci., 286(1): 90-100.
  • Zhang, G.K., Yang, X., Liu, Y., Jia, Y.Y., Yu, G.W. and Ouyang, S.X. 2004. Copper(II) adsorption on Ca-rectorite, and effect of static magnetic field on the adsorption. Journal of Colloid and Interface Science, 278(2): 265-269.
  • Zhang, Z.Y., O’Hara, I.M., Kent, G.A., Doherty and William.O.S. 2013. Comparative study on adsorption of two cationic dyes by milled sugarcane bagasse. Ind. Crops Prod., 42: 41-49.
  • Zheng, H., Wang, Z.Y., Zhao, J., Stephen, H. and Xing, B.S. 2013. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environ. Pollut., 181: 60-67.

Abstract Views: 112

PDF Views: 0




  • Effect of Solution pH on the Kinetic Adsorption of Methylene Blue by Sugarcane Bagasse Biochar Under a Magnetic Field

Abstract Views: 112  |  PDF Views: 0

Authors

Xiao Mi
Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
Yujie Guo
Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
Chunyu Zhang
Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
Li Wang
Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
Shen Zhang
Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
Bobo Zou
Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
Zejie Wang
Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
Guoting Li
Department of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China

Abstract


Sugarcane bagasse, an agricultural waste biomass was used to prepare biochar by pyrolyzing the biomass under oxygen-limited conditions. The prepared biochar was used for the adsorptive removal of a cationic dye methylene blue (MB) under a magnetic field. It was found that the existence of the external magnetic field had significantly enhanced the uptake of MB onto the bagasse biochar. The increased biochar dosage actually declined the uptake of MB while the effect of the magnetic field was still significant. The adsorption kinetics was investigated under different solution pH conditions. The experimental data were simulated using non-linear pseudo-first-order, pseudo-second-order and Elovich kinetic models. The Elovich kinetic model was found to be more suitable to describe the adsorption kinetics. This indicates that the adsorption of MB onto BC400 is a chemisorption process in which the rate-determining step is diffusion in nature. The uptake of MB is mainly attributed to the π-π electron-donor-acceptor interaction and electrostatic attraction.

Keywords


Biochar, Methylene Blue, Adsorption Kinetics, Bagasse, Magnetic Field.

References