Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Effects of Barrier Layer on the Electrical Property of Spin Coated Sn – Sb Oxide Films on Glass


Affiliations
1 Department of Chemistry, Krishnath College, Berhampore, Murshidabad - 742101, West Bengal, India
     

   Subscribe/Renew Journal


Antimony doped tin oxide films of two different compositions (10 and 30 atom % of Sb) were deposited on various glass substrates by sol-gel spinning technique. Three types of glass substrates, namely, bare soda lime silica (SLS) glass, barrier silica layer coated soda lime glass and pure silica glass were chosen. Phase identification and measurements of electrical properties of the deposited films were carried out. Along with normal cassiterite SnO2 phase, presence of monoclinic Na3SbO4 could also be identified in case of films deposited on bare SLS glass substrate clearly indicating the migration of Na+ ion from substrate to the film during annealing treatment. Absence of Na3SbO4 phase in the films deposited on silica coated SLS glass substrate implies the effectiveness of the barrier silica layer in preventing the Na+ ion migration into the film. This is also supported by the fact that the films deposited on barrier layer coated substrate exhibit superior conductance property than those deposited on the substrate without having any barrier layer. This is because, presence of the acceptor Na+ ion in the film decreases the carrier concentration of the latter.

Keywords

ATO Film, Electrical Properties, Spin Coating, Sol-Gel.
Subscription Login to verify subscription
User
Notifications
Font Size


  • A. V. Tadeev, G. Delabouglise and M. Labeau, Thin Solid Films, 337, 163 (1999).
  • N. Srinvasa Mury and S. R. Jawalekar, Thin Solid Films, 108, 277 (1983).
  • H. L. Ma, D. H. Zhang, S. Z. Win, S. Y. Li and Y. P. Chen, Sol. Ener. Mater. 40, 371 (1996).
  • A. Chaturvedi, V. N. Mishra, R. Dwivedi and S. K. Srivatava, Microelectr. J., 31, 283 (2000).
  • K. L. Chopra, S. Major and D. K. Pandya, Thin Solid Films, 102, 1 (1983).
  • R. Banerjee and D. Das, Thin Solid Films, 149, 291 (1987).
  • C. F. Wan, R. D. McGrath, W. F. Keenan and S. N. Frank, J. Electrochem. Soc., 36, 1459 (1989).
  • V. Vasu and A. Subrahmanyam, Thin Solid Films, 202, 283 (1991).
  • C. H. Lee and S. H. Liu, Thin Solid Films, 219, 170 (1993).
  • M. Ippommatsu and H. Sasaki, J. Electrochem. Soc., 136, 2123 (1989).
  • T. D. Senguttuvan and L. K. Malhotra, Thin Solid Films, 289, 22 (1996).
  • K. Y. Rajpure, M. N. Kusumade, M. N. Neumann-Spallart and C. H. Bhosale, Mater. Chem. Phys., 64, 184 (2000).
  • B. Thangaraju, Thin Solid Films, 402, 71 (2002).
  • C. Terrier, J. P. Chatelon, R. Berjoan and J. A. Roger, Thin Solid Films, 263, 37 (1995).
  • B. Orel, U. Lavrencic-Stanger, Z. Crnjak-Orel, P. Bukovec and M. Kosec, J. Non-Cryst. Solids, 167, 272 (1997).
  • J. Liu, E. Rädlein, G. H. Frischat, Phys. Chem. Glasses, 40, 282 (1999).
  • H. Rumpel et al. and Z. Naturforsch, B:Anorg. Chem., Org. Chem., 33 (1978).
  • B. Schwedes and R. Hoppe, Z Anorg. Allg. Chem., 393, 136 (1972).
  • C. Terrier, J. P. Chatelon and J. A. Roger, Thin Solid Films, 295, 95 (1997).
  • A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale and K. Y. Rajpure, Journal of Semiconductors, 32, 102001 (2011).
  • T. M. Hammad and N. K. Hejazy, Int. Nano Lett., 1, 123 (2011).

Abstract Views: 197

PDF Views: 2




  • Effects of Barrier Layer on the Electrical Property of Spin Coated Sn – Sb Oxide Films on Glass

Abstract Views: 197  |  PDF Views: 2

Authors

Arijit De
Department of Chemistry, Krishnath College, Berhampore, Murshidabad - 742101, West Bengal, India

Abstract


Antimony doped tin oxide films of two different compositions (10 and 30 atom % of Sb) were deposited on various glass substrates by sol-gel spinning technique. Three types of glass substrates, namely, bare soda lime silica (SLS) glass, barrier silica layer coated soda lime glass and pure silica glass were chosen. Phase identification and measurements of electrical properties of the deposited films were carried out. Along with normal cassiterite SnO2 phase, presence of monoclinic Na3SbO4 could also be identified in case of films deposited on bare SLS glass substrate clearly indicating the migration of Na+ ion from substrate to the film during annealing treatment. Absence of Na3SbO4 phase in the films deposited on silica coated SLS glass substrate implies the effectiveness of the barrier silica layer in preventing the Na+ ion migration into the film. This is also supported by the fact that the films deposited on barrier layer coated substrate exhibit superior conductance property than those deposited on the substrate without having any barrier layer. This is because, presence of the acceptor Na+ ion in the film decreases the carrier concentration of the latter.

Keywords


ATO Film, Electrical Properties, Spin Coating, Sol-Gel.

References