Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Measurement of Contact Angle of Particles at Fluid-Fluid Interface: An Overview


Affiliations
1 Polymer Engineering and Colloid Science (PECS) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 6000 36, India
     

   Subscribe/Renew Journal


A clear understanding of the adsorption of colloidal particles to interfaces is a matter of both scientific and technological interest. The particle stabilized interfaces are commonly encountered in food formulations, cosmetics, ceramic processing, pharmaceutical and other functional materials. The three phase contact angle of the particles at an interface is a measure of their equilibrium position at the interface. A quantitative estimation of this parameter is important to control the structure, dynamics and flow properties of particle laden interfaces. For example, an accurate measurement of contact angle is key for the determination of the interfacial attachment energy of particles, nature of electrostatic and capillary interactions, and for the synthesis of novel “patchy” particles. This review article is an insight into the different experimental methods for the measurement of the three phase contact angle of particles adsorbed to fluid-fluid interfaces. In the first part, we discuss the currently available methods highlighting the advantages and limitations of each type. In the second part, we review the measurement of contact angle of anisotropic particles and highlight the challenges in the accurate measurement of wettability of anisotropic particles attached to interfaces.

Keywords

Anisotropic Particles, Attachment Energy, Colloidal Interactions, Fluid-fluid Interface, Interfacial Assemblies, Particle Laden Interfaces, Three phase Contact Angle
Subscription Login to verify subscription
User
Notifications
Font Size


  • P. Pieranski, Phys. Rev. Lett., 45, 569 (1980).
  • W. Ramsden, Proc. R. Soc., London, 72, 156 (1903).
  • S. U. Pickering, J. Chem. Soc., Transactions, 91, 2001(1907).
  • B. P. Binks, Curr. Opin. Colloid Interface Sci., 7, 21 (2002).
  • R. Aveyard, B. P. Binks and J. H. Clint, Adv. Colloid Interface Sci., 100–102, 503 (2003).
  • A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch and D. A. Weitz, Science, 298, 1006 (2002).
  • Y. Chevalier and M.-A. Bolzinger, Colloids Surf., A: Physicochem. Eng. Asp., 439, 23 (2013).
  • Y. Zhao, L. Shang, Y. Cheng and Z. Gu, Acc. Chem. Res., 47,3632 (2014).
  • G. A. Ozin and S. M. Yang, Adv. Funct. Mater., 11, 95 (2001).
  • S. H. Im, Y. T. Lim, D. J. Suh and O. O. Park, Adv. Mater. 14,1367 (2002).
  • E. Dickinson, Curr. Opin. Colloid Interface Sci., 15, 40(2010).
  • A. Maestro, E. Guzmán, F. Ortega and R. G. Rubio, Curr.Opin. Colloid Interface Sci., 19, 355 (2014).
  • A. R. Studart, U. T. Gonzenbach, I. Akartuna, E. Tervoort and L. J. Gauckler, J. Mater. Chem., 17, 3283 (2007).
  • Z. Mao, H. Xu and D. Wang, Adv. Funct. Mater., 20, 1053(2010).
  • O. Kruglova, P.-J. Demeyer, K. Zhong, Y. Zhou and K. Clays, Soft Matter, 9, 9072 (2013).
  • G. von Freymann, V. Kitaev, B. V. Lotsch and G. A. Ozin, Chem. Soc. Rev., 42, 2528 (2013).
  • T. S. Horozov, R. Aveyard, J. H. Clint and B. P. Binks, Langmuir, 19, 2822 (2003).
  • D. Zang, E. Rio, G. Delon, D. Langevin, B. Wei and B. Binks, Mol. Phys., 109, 1057 (2011).
  • S. P. McBride and B. M. Law, Phys. Rev. Lett., 109, 196101(2012).
  • R. Krishnaswamy and A. K. Sood, J. Mater. Chem., 20, 3539 (2010).
  • F. Bresme and M. Oettel, J. Phys.: Condens. Matter, 19,413101 (2007).
  • A. Stocco, E. Rio, B. P. Binks and D. Langevin, Soft Matter,7, 1260 (2011).
  • B. P. Binks, P. D. I. Fletcher, B. L. Holt, P. Beaussoubre and K. Wong, Phys. Chem. Chem. Phys., 12, 11954 (2010).
  • T. S. Horozov and B. P. Binks, Angew. Chem. Int. Ed., 45, 773(2006).
  • Q. Chen, S. C. Bae and S. Granick, Nature, 469, 381 (2011).
  • K. J. Lee, J. Yoon and J. Lahann, Curr. Opin. Colloid Interface Sci., 16, 195 (2011).
  • V. N. Paunov and O. J. Cayre, Adv. Mater. 16, 788 (2004).
  • M. Sabapathy, S. D. Christdoss Pushpam, M. G. Basavaraj and E. Mani, Langmuir, 31, 1255 (2015).
  • M. Oettel and S. Dietrich, Langmuir, 24, 1425 (2008).
  • H. Lehle, E. Noruzifar and M. Oettel, Eur. Phys. J. E, 26, 151(2008).
  • E. W. Washburn, Phys. Rev., 17, 273 (1921).
  • F. E. Bartell and C. E. Whitney, J. Phys. Chem., 36, 3115(1931).
  • H. G. Bruil and J. J. van Aartsen, Colloid. Polym. Sci., 252, 32(1974).
  • L. Galet, S. Patry and J. Dodds, J. Colloid Interface Sci., 346,470 (2010).
  • A. Depalo and A. C. Santomaso, Colloids Surf., A: Physicochem. Eng. Asp., 436, 371 (2013).
  • R. F. Giese, P. M. Costanzo and C. J. van Oss, Phys. Chem.Miner., 17, 611 (1991).
  • P. M. Costanzo, W. Wu, R. F. Giese and C. J. van Oss,Langmuir, 11, 1827 (1995).
  • L. Holysz and E. Chibowski, Langmuir, 8, 717 (1992).
  • E. Chibowski and F. Gonzalez-Caballero, Langmuir, 9, 330(1993).
  • E. Chibowski and L. Holysz, Langmuir, 8, 710 (1992).
  • B. P. Binks and J. H. Clint, Langmuir, 18, 1270 (2002).
  • Z.-G. Cui, B. P. Binks and J. H. Clint, Langmuir, 21, 8319(2005).
  • J. H. Clint and S. E. Taylor, Colloids Surf., 65, 61 (1992).
  • J. H. Clint and N. Quirke, Colloids Surf., A: Physicochem.Eng. Asp., 78, 277 (1993).
  • D. O. Grigoriev, J. Kragel, V. Dutschk, R. Miller and H. Mohwald, Phys. Chem. Chem. Phys., 9, 6447 (2007).
  • D. O. Grigoriev, H. Mohwald and D. G. Shchukin, Phys.Chem. Chem. Phys., 10, 1975 (2008).
  • H.-J. Butt, J. Colloid Interface Sci., 166, 109 (1994).
  • M. Preuss and H.-J. Butt, J. Colloid Interface Sci., 208, 468(1998).
  • G. Gillies, B. Karsten, M. Preuss, M. Kappl and K. Graf,J. Phys.: Condens. Matter, 17, S445 (2005).
  • T. N. Hunter, G. J. Jameson and E. J. Wanless, Aust. J. Chem.,60, 651 (2007).
  • A. Deak, E. Hild, A. L. Kovacs and Z. Horvolgyi, Phys.Chem. Chem. Phys., 9, 6359 (2007).
  • D. Zang, A. Stocco, D. Langevin, B. Wei and B. P. Binks,Phys. Chem. Chem. Phys., 11, 9522 (2009).
  • A. Maestro, E. Guzman, E. Santini, F. Ravera, L. Liggieri, F. Ortega and R. G. Rubio, Soft Matter, 8, 837 (2012).
  • A. Stocco, G. Su, M. Nobili, M. In, and D. Wang, Soft Matter,10, 6999 (2014)
  • T. N. Hunter, G. J. Jameson, E. J. Wanless, D. Dupin and S.P. Armes, Langmuir, 25, 3440 (2009).
  • Y. Guo, D. Tang, Y. Du and B. Liu, Langmuir, 29, 2849(2013).
  • P. M. Hansson, L. Skedung, P. M. Claesson, A. Swerin,J. Schoelkopf, P. A. C. Gane, M. W. Rutland and E.
  • Thormann, Langmuir, 27, 8153 (2011).
  • R. N. Wenzel, Ind. Eng. Chem., 28, 988 (1936).
  • A. B. D. Cassie and S. Baxter, T. Faraday Soc., 40, 546(1944).
  • L. Gao and T. J. McCarthy, Langmuir, 23, 3762 (2007).
  • A. Hadjiiski, R. Dimova, N. D. Denkov, I. B. Ivanov and R.Borwankar, Langmuir, 12, 6665 (1996).
  • T. S. Horozov, D. A. Braz, P. D. I. Fletcher, B. P. Binks and J. H. Clint, Langmuir, 24, 1678 (2007).
  • K. M. Reed, J. Borovicka, T. S. Horozov, V. N. Paunov, K. L. Thompson, A. Walsh and S. P. Armes, Langmuir, 28, 7291
  • (2012).
  • V. N. Paunov, Langmuir, 19, 7970 (2003).
  • O. J. Cayre and V. N. Paunov, Langmuir, 20, 9594 (2004).
  • A. Maestro, L. J. Bonales, H. Ritacco, R. G. Rubio and F. Ortega, Phys. Chem. Chem. Phys., 12, 14115 (2010).
  • H. Al-Shehri, T. S. Horozov and V. N. Paunov, Soft Matter, 10, 6433 (2014).
  • E. L. Sharp, H. Al-Shehri, T. S. Horozov, S. D. Stoyanov and V. N. Paunov, RSC Adv., 4, 2177 (2014).
  • L. N. Arnaudov, O. J. Cayre, M. A. Cohen Stuart, S. D. Stoyanov and V. N. Paunov, Phys. Chem. Chem. Phys., 12,
  • (2010).
  • M. Destribats, S. Gineste, E. Laurichesse, H. Tanner, F. Leal-Calderon, V. Héroguez and V. Schmitt, Langmuir, 30, 9313
  • (2014).
  • H. Meyer and W. Richter, Micron, 32, 615 (2001).
  • L. Isa, F. Lucas, R. Wepf and E. Reimhult, Nat Commun, 2, 438 (2011).
  • B. P. Binks, L. Isa and A. T. Tyowua, Langmuir, 29, 4923(2013).
  • S. Coertjens, P. Moldenaers, J. Vermant and L. Isa, Langmuir, 30, 4289 (2014).
  • L. Isa, N. Samudrala and E. R. Dufresne, Langmuir, 30, 5057 (2014).
  • C. Snoeyink, S. Barman and G. F. Christopher, Langmuir,31, 891 (2014).
  • V. R. Dugyala, S. V. Daware and M. G. Basavaraj, Soft Matter, 9, 6711 (2013).
  • S. Sacanna, D. J. Pine and G.-R. Yi, Soft Matter, 9, 8096 (2013).
  • M. J. Solomon, Curr. Opin. Colloid Interface Sci., 16, 158(2011).
  • L. Botto, E. P. Lewandowski, M. Cavallaro and K. J. Stebe, Soft Matter, 8, 9957 (2012).
  • B. J. Park and D. Lee, ACS Nano, 6, 782 (2011).
  • J. C. Loudet, A. M. Alsayed, J. Zhang and A. G. Yodh, Phys.Rev. Lett., 94, 18301 (2005).
  • E. P. Lewandowski, M. Cavallaro Jr, L. Botto, J. C. Bernate, V. Garbin and K. J. Stebe, Langmuir, 26, 15142 (2010).
  • B. Madivala, S. Vandebril, J. Fransaer and J. Vermant, Soft Matter, 5, 1717 (2009).
  • J. W. de Folter, E. M. Hutter, S. I. Castillo, K. E. Klop, A. P. Philipse and W. K. Kegel, Langmuir, 30, 955 (2013).
  • R. G. Alargova, D. S. Warhadpande, V. N. Paunov and O. D.Velev, Langmuir, 20, 10371 (2004).
  • B. Madivala, J. Fransaer and J. Vermant, Langmuir, 25, 2718(2009).
  • J. Loudet, A. Yodh and B. Pouligny, Phys. Rev. Lett., 97,18304 (2006).
  • A. R. Morgan, N. Ballard, L. A. Rochford, G. Nurumbetov,T. S. Skelhon and S. A. F. Bon, Soft Matter, 9, 487 (2013).

Abstract Views: 337

PDF Views: 0




  • Measurement of Contact Angle of Particles at Fluid-Fluid Interface: An Overview

Abstract Views: 337  |  PDF Views: 0

Authors

Thriveni G. Anjali
Polymer Engineering and Colloid Science (PECS) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 6000 36, India
Madivala G. Basavaraj
Polymer Engineering and Colloid Science (PECS) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 6000 36, India

Abstract


A clear understanding of the adsorption of colloidal particles to interfaces is a matter of both scientific and technological interest. The particle stabilized interfaces are commonly encountered in food formulations, cosmetics, ceramic processing, pharmaceutical and other functional materials. The three phase contact angle of the particles at an interface is a measure of their equilibrium position at the interface. A quantitative estimation of this parameter is important to control the structure, dynamics and flow properties of particle laden interfaces. For example, an accurate measurement of contact angle is key for the determination of the interfacial attachment energy of particles, nature of electrostatic and capillary interactions, and for the synthesis of novel “patchy” particles. This review article is an insight into the different experimental methods for the measurement of the three phase contact angle of particles adsorbed to fluid-fluid interfaces. In the first part, we discuss the currently available methods highlighting the advantages and limitations of each type. In the second part, we review the measurement of contact angle of anisotropic particles and highlight the challenges in the accurate measurement of wettability of anisotropic particles attached to interfaces.

Keywords


Anisotropic Particles, Attachment Energy, Colloidal Interactions, Fluid-fluid Interface, Interfacial Assemblies, Particle Laden Interfaces, Three phase Contact Angle

References





DOI: https://doi.org/10.17834/ijsstissst.v31i1-2.79933