Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

BSA can form Micelle in Aqueous Solution


Affiliations
1 Chemical Laboratory, Council of Scientific and Industrial Research (CSIR)–Central Leather Research Institute (CLRI),Chennai 600020, India
     

   Subscribe/Renew Journal


Protein aggregation is pathogenic and plays significant role in causing neurodegenerative diseases in biological system. Although the evolution of different types of protein aggregation mediated diseases are well-known, the origin and molecular mechanism of these aggregates remain unclear. In the present investigation, self-assembling characteristics of BSA is discussed by evaluating its critical micelle concentration (cmc) and aggregation number using surface tension and various spectroscopic techniques. The cmc of BSA is estimated to be 0.65-0.69 μM in solution. Steady state and time resolved fluorescence methods are employed to determine the aggregation number of the BSA micelles, which is found to be ~ 44. The accessibility of the fluorophore to the CPC quencher in the BSA micelle is assessed using Lehrer’s plot. Furthermore, the morphology and size of the aggregates are studied using HRTEM, Scanning Electron Microscopy, Confocal microscopy and Dynamic light scattering methods. The present study helps in understanding the physicochemical properties of BSA protein aggregation and also provides the mechanistic details of the phenomenon.

Keywords

Aggregation, BSA, Lifetime, Micelle, Microscopy, Size
Subscription Login to verify subscription
User
Notifications
Font Size


  • P. R. Clarke and C. Zhang, Nat. Rev. Mol. Cell. Biol., 9, 464 (2008).
  • J. Juarez, M. Alatorre-Meda, A. Cambon, A. Topete, S. Barbosa, P. Taboada and V. Mosquera, Soft Matter, 8, 3608 (2012).
  • T. P. J. Knowles, M. Vendruscolo and C. M. Dobson, Nat.Rev. Mol. Cell. Biol., 15, 384 (2014).
  • D. Jiang, I. Rauda, S. Han, S. Chen and F. Zhou, Langmuir,28, 12711 (2012).
  • T. R. Serio, A. G. Cashikar, A. S. Kowal, G. J. Sawicki, J.J. Moslehi, L. Serpell, M. F. Arnsdorf and S. L. Lindquist,Science, 289, 1317 (2000).
  • D. Foguel, M. C. Suarez, A. D. Ferrao-Gonzales, T. C. R. Porto, L. Palmieri, C. M. Einsiedler, L. R. Andrade, H. A.Lashuel, P. T. Lansbury, J. W. Kelly and J. L. Silva, PNAS,100, 9831 (2003).
  • O. Gursky and S. Aleshkov, BBA-Protein Struct. M., 1476,93 (2000).
  • C. Haass and D. J. Selkoe, Nat. Rev. Mol. Cell. Biol., 8, 101(2007).
  • J. D. Knight and A. D. Miranker, J.Mol. Biol., 341, 1175(2004).
  • A. Relini, C. Canale, S. De Stefano, R. Rolandi, S. Giorgetti,M. Stoppini, A. Rossi, F. Fogolari, A. Corazza, G. Esposito,A. Gliozzi and V. Bellotti, J. Biol. Chem., 281, 16521(2006).
  • H. E. White, J. L. Hodgkinson, T. R. Jahn, S. Cohen-Krausz, W. S. Gosal, S. Muller, E. V. Orlova, S. E. Radford and H. R.Saibil, J. Mol. Biol., 389, 48 (2009).
  • E. T. Powers and J. W. Kelly, J. Am. Chem. Soc., 123, 775 (2001).
  • J. Munoz-Gomez and M. Sole Arques, Ann. Rheum. Dis.,45, 879 (1986).
  • J. M. Theaker, A. E. Raine, A. J. Rainey, A. Heryet, A. Clark and D. O. Oliver, J. Clin. Pathol., 40, 1247 (1987).
  • C. M. Dobson, Nature, 426, 884 (2003).
  • C. F. Wright, S. A. Teichmann, J. Clarke and C. M. Dobson,Nature, 438, 878 (2005).
  • S. Frokjaer and D. E. Otzen, Nat Rev Drug Discov, 4, 298 (2005).
  • E. Chi, S. Krishnan, T. Randolph and J. Carpenter, Pharm. Res., 20, 1325 (2003).
  • H.-C. Mahler, W. Friess, U. Grauschopf and S. Kiese, J.Pharm. Sci., 98, 2909 (2009).
  • H. L. Cole, J. M. D. Kalapothakis, G. Bennett, P. E. Barran and C. E. MacPhee, Angew. Chem. Int. Edit., 49, 9448 (2010).
  • M. Renault, A. Cukkemane and M. Baldus, Angew. Chem. Int. Edit., 49, 8346 (2010).
  • I. Cherny and E. Gazit, Angew. Chem. Int. Edit., 47, 4062 (2008).
  • C. Wang, J. Liu, W. Pan, X. Wang, Q. Gao and S. Hou, Int. J.Pharm., 351, 219 (2008).
  • D. Xu, X. Chen, K. E. Chen, Y. Peng, Y. Li, Y. Ke and D. Gan,J. Biomater. Appl., 29, 378 (2014).
  • A. B. Mandal and R. Jayakumar, J. Chem. Soc., Chem. Comm., 237 (1993)
  • R. Jayakumar, A. B. Mandal and P. T. Manoharan, J. Chem.Soc., Chem. Comm., 853 (1993).
  • A. B. Mandal and R. Jayakumar, J. Chem. Soc., Faraday Trans., 90, 161 (1994).
  • A. B. Mandal, A. Dhathathreyan, R. Jayakumar and T.Ramasami, J. Chem. Soc., Faraday Trans., 89, 3075 (1993).
  • A. Mandal, R. S. G. Krishnan, S. Thennarasu, S. Panigrahi and A. B. Mandal, Colloids Surf., B, 79, 136, (2010).
  • R. Jayakumar, R. G. Jeevan, A. B. Mandal and P. T. Manoharan, J. Chem. Soc., Faraday Trans., 90, 2725 (1994).
  • A. B. Mandal, D. V. Ramesh and S. C. Dhar, Eur. J. Biochem.,169, 617 (1987).
  • C. Rose and A. B. Mandal, Int. J. Biol. Macromol., 18, 41(1996).
  • B. Geetha, A. B. Mandal and T. Ramasami, Macromolecules, 26, 4083 (1993).
  • B. Geetha and A. B. Mandal, Langmuir, 11, 1464 (1995).
  • G. Baskar and A. B. Mandal, Chem. Phys. Lett., 266, 443 (1997).
  • B. Geetha and A. B. Mandal, J. Chem. Phys., 105, 9649(1996).
  • G. Baskar and A. B. Mandal, Langmuir, 16, 3957 (2000).
  • B. Geetha and A. B. Mandal, Chem. Phys. Lett., 318, 35(2000).
  • A. B. Mandal and B. U. Nair, J. Phys. Chem., 95, 9008(1991).
  • A. B. Mandal, Langmuir, 9, 1932 (1993).
  • R. S. G. Krishnan, S. Thennarasu and A. B. Mandal, Chem.Phys., 291, 195 (2003).
  • G. K. S.Prameela, B. V. N. Phanikumar, V. K. Aswal and A.B. Mandal. Phys. Chem. Chem. Phys., 15, 17577 (2013).
  • A. Pan, B. Naskar, G. K. S. Prameela, B. V. N. Phanikumar, A.B. Mandal, S. C. Bhattacharya and S. P. Moulik, Langmuir,28, 13830 (2012).
  • A. Pan, B. Naskar, G. K. S. Prameela, B. V. N. Phanikumar,V. K. Aswal, A. B. Mandal and S. P. Moulik, Soft Matter, 10,5682 (2014).
  • N. M. van Os, J. R. Haak and L. A. M. Rupert, “Physico-Chemical Properties of Selected Anionic, Cationic and Nonionic Surfactants”, Elsevier, Amsterdam, viii, 608(1993).
  • A. B. Schreiber, and J. Haimovich, Methods Enzymol., 93,147 (1983).
  • S. K. Ghosh, P. K. Khatua and S. C. Bhattacharya, J. Coll.Inter. Sci., 275, 623 (2004).
  • P. J. Tummino and A. Gafni, Biophys. J., 64, 1580 (1993).
  • A. Sarkar and S. C. Bhattacharya, J. Lumin., 132, 2612(2012).
  • P. Bandyopadhyay and K. Saha, Chem. Phys. Lett., 457, 227(2008).
  • E. Abuin, C. Calderon and E. Lissi, J.Photochem. Photobiol.A, 195, 295 (2008).
  • N. J. Turro and A. Yekta, J. Am. Chem. Soc., 100, 5951 (1978).
  • R. Zana and R. A. Mackay, Langmuir, 2, 109 (1986).
  • M. Dekker, Surfactant Solutions, New Methods of Investigations. Ed. R. Zana, New York, (1987): Chapter 5.
  • M. Tachiya, Chem. Phys. Lett., 33, 289 (1975).
  • M. Tachiya, J. Chem. Phys., 78, 5282 (1983).
  • R. F. Atmeh, I. M. Arafa and M. Al-Khateeb, Jordon J. Chem,2, 169 (2007).
  • A. B. Mandal, S. Ray, A. M. Biswas and S. P. Moulik, J. Phys.Chem., 84, 856 (1980).
  • R. S. G. Krishnan, S. Thennarasu and A. B. Mandal, J. Phys.Chem B, 108, 8806 (2004).
  • S. I. Yoo, M. Yang, J. R. Brender, V. Subramanian, K. Sun,N. E. Joo, S.-H. Jeong, A. Ramamoorthy and N. A. Kotov,Angew. Chem. Int. Edit., 50, 5110 (2011).
  • Y. H. Liao, Y. J. Chang, Y. Yoshiike, Y. C. Chang and Y. R.Chen, Small, 8, 3631, (2012).

Abstract Views: 472

PDF Views: 5




  • BSA can form Micelle in Aqueous Solution

Abstract Views: 472  |  PDF Views: 5

Authors

Loganathan Bhavani Devi
Chemical Laboratory, Council of Scientific and Industrial Research (CSIR)–Central Leather Research Institute (CLRI),Chennai 600020, India
Asit Baran Mandal
Chemical Laboratory, Council of Scientific and Industrial Research (CSIR)–Central Leather Research Institute (CLRI),Chennai 600020, India

Abstract


Protein aggregation is pathogenic and plays significant role in causing neurodegenerative diseases in biological system. Although the evolution of different types of protein aggregation mediated diseases are well-known, the origin and molecular mechanism of these aggregates remain unclear. In the present investigation, self-assembling characteristics of BSA is discussed by evaluating its critical micelle concentration (cmc) and aggregation number using surface tension and various spectroscopic techniques. The cmc of BSA is estimated to be 0.65-0.69 μM in solution. Steady state and time resolved fluorescence methods are employed to determine the aggregation number of the BSA micelles, which is found to be ~ 44. The accessibility of the fluorophore to the CPC quencher in the BSA micelle is assessed using Lehrer’s plot. Furthermore, the morphology and size of the aggregates are studied using HRTEM, Scanning Electron Microscopy, Confocal microscopy and Dynamic light scattering methods. The present study helps in understanding the physicochemical properties of BSA protein aggregation and also provides the mechanistic details of the phenomenon.

Keywords


Aggregation, BSA, Lifetime, Micelle, Microscopy, Size

References





DOI: https://doi.org/10.17834/ijsstissst.v31i1-2.79921