Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Molecular Basis of the Binding of Dye to Polycations: Absorption and Emission Spectral Studies


Affiliations
1 Department of Chemistry, University of North Bengal, Darjeeling-734 013, West Bengal, India
     

   Subscribe/Renew Journal


Absorption and emission spectral behaviour of an anionic xanthene dye, eosinY was investigated to perceive the nature and extent of interaction with three different cationic polyelectrolytes. The formation of dye-polymer aggregates was found to be associated with two types of interactive forces: electrostatic and hydrophobic forces. The binding constants and stoichiometry of the dye-polymer aggregates in their ground states were determined by suitably analyzing the absorption spectra by varying the concentration of the polymers. Subsequently, the thermodynamic parameters for the interaction processes were evaluated. The interaction parameters followed the sequence PDMDAAC > JR400 > LM200. The excited state interaction phenomena were studied from the fluorescence data. Change in the excited state lifetime of the fluorophore was insignificant in all the three cases. Consequently, Stern-Volmer quenching constants of the dye-polymer aggregates were calculated using the standard method. Significant information about the changes on the degree of motion of the fluorescent molecule around the polymer matrix was obtained from the anisotropy measurements.

Keywords

Dye-Polymer Interaction, Fluorescence, Interaction Constant, Anisotropy.
Subscription Login to verify subscription
User
Notifications
Font Size


  • B. Kolaric, M. Sliwa, R. A. L. Vallee and M. Van der Auweraer, Colloid Surf. A, 338, 61 (2009).
  • F. Caruso, C. Schuler and D. G. Kurth, Chem Mater, 11, 3394 (1999).
  • Schluter A D (2008)in Synthesis of Polymers, Wiley-VCH Verlag GmbH:; pp 459483.
  • A. Butters and Clifton A Receiver medium for digital imaging. WO2000074944A1, 2000.
  • R. Pola, M. Studenovsky, M. Pechar, K. Ulbrich, O. Hovorka, D. Vetvicka and B. Rihova, J. Drug Target, 17, 763 (2009).
  • A. T. Slark and P. M. Hadgett, Polymer, 40, 1325 (1999).
  • V. Ball, Materials, 5, 2681 (2012).
  • S. Karsli-Ceppioqlu and T. Yurdun, Marmara Univ Saglik Bilimleri Enst Derg, 2, 108 (2012).
  • G. Milikli and R. C. S. V. Ramachandra, Int. J. Integr Sci. Innovation Technol., 1, 32 (2012).
  • A. Salima, K-S Ounissa, M. Lynda and B. Mohamed, Procedia Eng., 33, 38 (2012).
  • S.Chatterjee, S. Chatterjee, B. P. Chatterjee and A. K. Guha, Colloid Surf. A, 299, 146 (2007).
  • B. Ramesh, A. K. Parande, S. Raghu and T. Prem Kumar, J. Cotton Sci., 11, 141 (2007).
  • M. S. Rahbar, E. Alipour and R. E. Sedighi, Int. J. Environ Sci. Technol., 3, 79 (2006).
  • M. Chakraborty and A. K. Panda, Spectrochim Acta A, 81, 458 (2011).
  • A. Archut, G. C. Azzellini, V. Balzani, L. Cola and F. Voegtle, J. Am. Chem. Soc., 120, 12187 (1998).
  • J. P. Fouassier and E. Chesneau, Makromol Chem., 192, 245 (1991).
  • E. Zipfel, J. R. Grezes, A. Naujok, W. Seiffert, D. H. Wittekind and H. W. Zimmermann, Histochemistry, 81, 337 (1984).
  • S. Mukherjee, A. Dan, S. C. Bhattacharya, A. K. Panda and S. P. Moulik, Langmuir, 27, 5222 (2011).
  • P. Desenne, C. Bebot and F. Laurent (2003) EP1321134A2.
  • Jacquier IFR2976487A1(2012).
  • Y. Hu and ZQ Liao, Yingyong Huagong, 32, 56 (2003).
  • W. E. Schulze, E. Hoting, Poppe EWO2008028778A2 (2008).
  • S. Dasgupta, R. K. Nath, S. Biswas, J. Hossain, A. Mitra and A. K. Panda, Colloid Surface A, 302, 17 (2007).
  • A. Mitra, R. K. Nath, S. Biswas, A. K. Chakraborty and A. K. Panda, J. Photochem Photobiol A, 178, 98 (2006).
  • A. K. Panda and A. K. Chakraborty, J. Photochem Photobiol A, 111, 157 (1997).
  • A. K. Panda and A. K. Chakraborty, J. Colloid Interf Sci., 203, 260 (1998).
  • E. K. Batchelor, S. Gadde and A. E. Kaifer, Supramol Chem., 22, 40 (2010).
  • T. Kunisawa, T. Sato, Y. Yonezawa, M. I. Sluch and A. G. Vitukhnovsky, Nippon Shashin Gakkaishi, 59, 465 (1996).
  • R. Nandini and B. Vishalakshi, E-J Chem., 8, S253 (2011).
  • Y. I. Korenman, N. Y. Sannikova, P. T. Sukhanov, A. V. Gusev, E. V. Churilina and G. V. Shatalov, Izv Vyssh Uchebn Zaved Khim Khim Tekhnol., 54, 82 (2011).
  • J. Y. Park, Y. Hirata and K. Hamada, Color Technol., 128, 184 (2012).
  • D. Jocic, S. VĂ­lchez, T. Topalovic, A. Navarro, P. Jovancic, M. R. Julia and P. Erra, Carbohyd Polym., 60, 51 (2005).
  • J. F. de Deus, A. Cirpan, F. Karasz and L. Akcelrud, Curr. App. Phys,, 10, 365 (2010).
  • S. Paul and A. K. Panda, Colloid Surface A, 404, 1 (2012).
  • D. Sarkar, P. Das, S. Basak and N. Chattopadhyay, J. Phys. Chem. B, 112, 9243 (2008).
  • K. Manna and A. K. Panda, Spectrochim Acta A, 74, 1268 (2009).
  • Y. Yu and Y. Zhang, Mod. App. Sci., 3, 9 (2009).
  • R. Nandini and B. Vishalakshi, Spectrochim Acta A, 75, 14 (2010).
  • H. A. Benesi and J. H. Hildebrand, J. Amer Chem. Soc., 71, 2703 (1949).
  • I. Schlachter, U. Howeler, W. Iwanek, M. Urbaniak and J. Mattay, Tetrahedron, 55, 14931 (1999).
  • M. De, S. Bhattacharya, S. P. Moulik and A. K. Panda, J. Surfact Deterg, 13, 475 (2010).
  • S. Paul and A. Panda, J. Surfact Deterg, 14, 473 (2011).
  • S. De, S. Das and A. Girigoswami, Spectrochim Acta A, 61, 1821 (2005).
  • A. Chakrabarty, A. Mallick, B. Haldar, P. Das & N. Chattopadhyay, Biomacromolecules, 8, 920 (2007).

Abstract Views: 286

PDF Views: 5




  • Molecular Basis of the Binding of Dye to Polycations: Absorption and Emission Spectral Studies

Abstract Views: 286  |  PDF Views: 5

Authors

Moumita Chakraborty
Department of Chemistry, University of North Bengal, Darjeeling-734 013, West Bengal, India
Amiya Kumar Panda
Department of Chemistry, University of North Bengal, Darjeeling-734 013, West Bengal, India

Abstract


Absorption and emission spectral behaviour of an anionic xanthene dye, eosinY was investigated to perceive the nature and extent of interaction with three different cationic polyelectrolytes. The formation of dye-polymer aggregates was found to be associated with two types of interactive forces: electrostatic and hydrophobic forces. The binding constants and stoichiometry of the dye-polymer aggregates in their ground states were determined by suitably analyzing the absorption spectra by varying the concentration of the polymers. Subsequently, the thermodynamic parameters for the interaction processes were evaluated. The interaction parameters followed the sequence PDMDAAC > JR400 > LM200. The excited state interaction phenomena were studied from the fluorescence data. Change in the excited state lifetime of the fluorophore was insignificant in all the three cases. Consequently, Stern-Volmer quenching constants of the dye-polymer aggregates were calculated using the standard method. Significant information about the changes on the degree of motion of the fluorescent molecule around the polymer matrix was obtained from the anisotropy measurements.

Keywords


Dye-Polymer Interaction, Fluorescence, Interaction Constant, Anisotropy.

References