Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Self-Assembly Study of Sodium Salt of 2-Amidodecyl Pyridine-5-Boronic Acid and Sodium Salt of 2-Amidododecyl Pyridine-5-Boronic Acid in Buffer Solution


Affiliations
1 Department of Chemistry, Vidyasagar University, Paschim Medinipur – 721102, West Bengal, India
     

   Subscribe/Renew Journal


Boronic acid based amphiphiles are new generation green surfactant materials because they degrade to produce environmentally friendly boric acid. This study describes the interfacial property as well as aggregation behaviour of two pyridine based boronic acid amphiphiles containing amide linkage in hydrocarbon chain named sodium salt of 2-amidodecyl pyridine-5-boronic acid (SADPB) and sodium salt of 2-amidododecyl pyridine-5-boronic acid (SADDPB). Tensiometry study was executed for investigation of interfacial properties of pyiridine based boronic acid derivatives. Polarity and viscosity of the microenvironment of aggregates was investigated using fluorescence technique. DLS measurement suggested size of the assemblies of SADDPB is larger than SADPB in solutions. XRD technique was employed to examine arrangement of the hydrophobic tails in the bilayer aggregates. TEM technique was utilised to scrutinize aggregate morphology in solutions. The findings showed prospect of these amphiphiles to be applicable as drug carrier in pharmaceutical industries.

Keywords

Boronic Acid Amphiphile, Self-Assembly, Vesicle.
Subscription Login to verify subscription
User
Notifications
Font Size


  • J. Chen, F. Cheng. Acc. Chem. Res. 42, 713 (2009). https://doi.org/10.1021/ar800229g. PMid:19354236.
  • S.I. Stupp. Nano Lett., 10, 4783 (2010). https://doi. org/10.1021/nl103567y. PMid:21028843 PMCid: PMC3175009.
  • X. Zhao, F. Pan, H. Xu, M. Yaseen, H. Shan, C.A. Hauser, S. Zhang. J.R. Lu. Chem. Soc. Rev., 39, 3480 (2010). https://doi.org/10.1039/b915923c. PMid:20498896.
  • L. Pérez, A. Pinazo, R. Pons, M. Infante. Adv. Colloid Interface Sci., 205, 134 (2014). https://doi.org/10.1016/j.cis.2013.10.020. PMid:24238395.
  • R.N. Mitra, A. Shome, P. Paul, P.K. Das. Org. Biomol. Chem., 7, 94 (2009). https://doi.org/10.1039/B815368J. PMid:19081951.
  • M. Deng, D. Yu, Y. Hou, Y. Wang. J. Phys. Chem. B., 113, 8539 (2009). https://doi.org/10.1021/jp904289y. PMid:19534562.
  • U. Khoe, Y. Yang, S. Zhang. Langmuir, 25, 4111 (2009). https://doi.org/10.1021/la8025232. PMid:19007256.
  • C. Boettcher, B. Schade, J. H. Fuhrhop. Langmuir, 17, 873 (2001). https://doi.org/10.1021/la001054p.
  • D. Kaneko, U. Olsson, K. Sakamoto. Langmuir, 18, 4699 (2002). https://doi.org/10.1021/la0117653.
  • H. Kawasaki, M. Souda, S. Tanaka, N. Nemoto, G. Karlsson, M. Almgren, H. Maeda. J. Phys. Chem. B., 106, 1524 (2002). https://doi.org/10.1021/jp013366m.
  • D.W.P.M. Löwik, J.C.M. van Hest. Chem. Soc. Rev., 33, 234 (2004). https://doi.org/10.1039/B212638A. PMid:15103405.
  • H. Tsutsumi, H. Mihara. Amino Acids Pept. Proteins, 38, 122 (2013). https://doi.org/10.1039/9781849737081-00122.
  • A. Ohta, K. Tani-i, A. Hoshiba, T. Asakawa, S. Miyagishi. Chem. Lett., 34, 560 (2005). https://doi.org/10.1246/cl.2005.560.
  • S. Roy, D. Khatua, J. Dey. J. Colloid Interface Sci., 292, 255 (2005). https://doi.org/10.1016/j.jcis.2005.05.054. PMid:16024030.
  • D. Vollhardt, U. Gehlert. J. Phys. Chem. B, 106, 4419 (2002). https://doi.org/10.1021/jp0125294.
  • R. Bordes, J. Tropsch, K. Holmberg. Langmuir, 26, 3077 (2010). https://doi.org/10.1021/la902979m. PMid: 19817350.
  • T. Patra, S. Ghosh, J. Dey. Soft Matter., 6, 3669 (2010). https://doi.org/10.1039/c000898b. PMid:20657806 PMCid: PMC2907537.
  • S. Ghosh, J. Dey. J. Phys. Chem. B, 119, 7804 (2015). https://doi.org/10.1021/acs.jpcb.5b00965. PMid:26023820.
  • J. Hoque, P. Kumar, V. K. Aswal, J. Haldar. J. Phys. Chem. B, 116, 9718 (2012). https://doi.org/10.1021/jp305590f. PMid:22809410.
  • V. Chauhan, S. Singh, R. Mishra, G. Kaur. J Colloid Interface Sci., 436, 122 (2014). https://doi.org/10.1016/j.jcis.2014.08.029. PMid:25268815.
  • R. Kamboj, P. Bharmoria, V. Chauhan, S. Singh, A. Kumar, V. S. Mithu, T.S. Kang. Langmuir, 30, 9920 (2014). https://doi.org/10.1021/la501897e. PMid:25062465.
  • S.D. Mandolesi, S.E. Vaillard, J.C. Podesta, R.A. Rossi. Organometallics, 21, 4886 (2002). https://doi.org/10.1021/om020163r.
  • J. Adams, Y.T. Ma, R. Stein, M. Baevsky, L. Grenier, L. Plamondon. U.S. Patent 6066730 (2000).
  • T. Nonaka, J. Li, A. Takeichi, B. Hornung, J. Manero, W. Schmidt, R. Wingen. PCT Int. Appl., WO 97/24351, 49 (1997).
  • C.W. Garner. J. Biol. Chem., 255, 5064 (1980). https://doi.org/10.1016/S0021-9258(19)70749-2.
  • G. Illian, A. Kaibeitzel, R. Wingen, H. Schlosser. Eur. Pat. Appl. EP 541081, 40 (1993).
  • A.B. Shenvi, C.A. Kettner. U.S. Patent 4499082 (1985).
  • R.M. O’Donovan, C.D. Mee, S. Fenner, A. Teasdale, D.H. Phillips. Mutat. Res.- Genet. Toxicol. Environ. Mutagen., 724, 1 (2011). https://doi.org/10.1016/j.mrgentox.2011.05.006. PMid:21645632.
  • J.N. Cambre, B.S. Sumerlin. Polymer, 52, 4631 (2011). https://doi.org/10.1016/j.polymer.2011.07.057.
  • M. Maiti, A. Roy, S. Roy. Langmuir, 29, 13329 (2013). https://doi.org/10.1021/la403379g. PMid:24083447.
  • M. Maiti, A. Roy, S. Roy. Colloid Polym. Sci., 294, 171 (2016). https://doi.org/10.1007/s00396-015-3760-z.
  • S. Roy, M. Maiti, A. Roy. Chemistry Select, 2, 6929 (2017). https://doi.org/10.1002/slct.201701397.
  • D.G. Hall. Structure, Properties, and Preparation of Boronic Acid Derivatives. Overview of their Reactions and Applications. In: Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine, Hall DG, Ed. Wiley-VCH Weinheim Germany; p. 1-99 (2005). https://doi.org/10.1002/3527606548.ch1. PMCid:PMC4166149.
  • Y.J. Huang, W.J. Ouyang, X. Wu, Z. Li, J.S. Fossey, T.D. James, Y.B. Jiang. J. Am. Chem. Soc., 135, 1700 (2013). https://doi.org/10.1021/ja311442x. PMid:23317305.
  • S. Grigoriou, E.K. Johnson, L. Chen, D.J. Adams, T.D. James, P.J. Cameron. Soft Matter, 8, 6788 (2012). https://doi.org/10.1039/c2sm25713k.
  • R. Dong, W. Liu, J. Hao. Acc. Chem. Res., 45, 504 (2012). https://doi.org/10.1021/ar200124g. PMid:22257298.
  • M.J. Rosen. Surfactants and Interfacial Phenomena. 3rd Ed. Wiley Interscience: New York; (2004). https://doi.org/10.1002/0471670561.
  • D.F. Evans, H. Wennerstorm. The Colloidal Domain: Where Physics, Chemistry, Biology and Technology Meets, VCH, New York; (1994).
  • M.J. Rosen, A.W. Cohen, M. Dahanayake, X.Y. Hua. J. Phys. Chem., 86, 541 (1982). https://doi.org/10.1021/j100393a025.
  • R. Sharma, R.K. Mahajan. RSC Adv., 2, 9571 (2012). https://doi.org/10.1039/c2ra21020g.
  • J.N. Israelachvili. Intermolecular and surface forces, Academic Press, London; (1992).
  • J.N. Israelachvilli, Intermolecular and surface forces, 4th Ed., Academic Press, London; (1994).
  • J.T. Edward. J. Chem. Educ., 47, 261 (1970). https://doi.org/10.1021/ed047p261.
  • X. Wang, J. Wang, Y. Wang, H. Yan. Langmuir, 20, 9014 (2004). https://doi.org/10.1021/la048856v. PMid:15461481.
  • Y. Yan, W. Xiong, X. Li, T. Lu, J. Huang, Z. Li, H. Fu. J. Phys. Chem. B, 11, 2225 (2007).
  • M. Shinitzky, I. Yuli. Chem. Phys. Lipids, 30, 261 (1982). https://doi.org/10.1016/0009-3084(82)90054-8.
  • S. Angayarkanny, R. Vijay, G. Baskar, A.B. Mandal. Langmuir, 28, 9378 (2012). https://doi.org/10.1021/la3015095. PMid:22686136.
  • M. Shinitzky, Y. Barenholz. J. Biol. Chem., 249, 2652 (1974). https://doi.org/10.1016/S0021-9258(19)42780-4.
  • A. Ghosh, J. Dey. Langmuir, 24, 6018 (2008). https://doi.org/10.1021/la800232x. PMid:18481882.
  • P. Debye. Polar Molecules, Dover, New York; (1929).
  • S. Roy, A. Mohanty, J. Dey. Chem. Phys. Lett. 414, 23 (2005). https://doi.org/10.1016/j.cplett.2005.07.046.
  • J.R. Lakowicz. Principles of Fluorescence Spectroscopy, Plenum Press, New York; 132 (1983). https://doi.org/10.1007/978-1-4615-7658-7.
  • M. Shinitzky, A.C. Dianoux, C. Itler, G. Weber. Biochemistry, 10, 2106 (1971). https://doi.org/10.1021/bi00787a023. PMid:4104937.
  • P.A. Hassan, S.R. Raghavan, E.W. Kaler. Langmuir, 18, 2543 (2002). https://doi.org/10.1021/la011435i.

Abstract Views: 149

PDF Views: 1




  • Self-Assembly Study of Sodium Salt of 2-Amidodecyl Pyridine-5-Boronic Acid and Sodium Salt of 2-Amidododecyl Pyridine-5-Boronic Acid in Buffer Solution

Abstract Views: 149  |  PDF Views: 1

Authors

Sumita Roy
Department of Chemistry, Vidyasagar University, Paschim Medinipur – 721102, West Bengal, India
Monali Maiti
Department of Chemistry, Vidyasagar University, Paschim Medinipur – 721102, West Bengal, India
Siddhartha Das
Department of Chemistry, Vidyasagar University, Paschim Medinipur – 721102, West Bengal, India

Abstract


Boronic acid based amphiphiles are new generation green surfactant materials because they degrade to produce environmentally friendly boric acid. This study describes the interfacial property as well as aggregation behaviour of two pyridine based boronic acid amphiphiles containing amide linkage in hydrocarbon chain named sodium salt of 2-amidodecyl pyridine-5-boronic acid (SADPB) and sodium salt of 2-amidododecyl pyridine-5-boronic acid (SADDPB). Tensiometry study was executed for investigation of interfacial properties of pyiridine based boronic acid derivatives. Polarity and viscosity of the microenvironment of aggregates was investigated using fluorescence technique. DLS measurement suggested size of the assemblies of SADDPB is larger than SADPB in solutions. XRD technique was employed to examine arrangement of the hydrophobic tails in the bilayer aggregates. TEM technique was utilised to scrutinize aggregate morphology in solutions. The findings showed prospect of these amphiphiles to be applicable as drug carrier in pharmaceutical industries.

Keywords


Boronic Acid Amphiphile, Self-Assembly, Vesicle.

References