Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Electronic and Transmission Properties of Low Buckled GaAs Armchair Nanoribbons


Affiliations
1 Department of Electronics and Communication Engineering, GLA University, Mathura - 281406, Uttar Pradesh, India
     

   Subscribe/Renew Journal


The electronic and transmission properties of N atom width (N: 4, 8, 12, 16)low-buckled (LB) armchair GaAs hydrogen (H) passivated nanoribbons (NA GaAs NRs) are studied with the help of first-principle theory. In low buckled armchair GaAs nanoribbon, quantum confinement effect is observed due to which all of the investigated NA GaAs NRs with H passivated are found to be semiconducting. The fundamental direct band gap at k-point Г (gamma) have been calculated, which exhibit interesting width dependent (N: 4~16) behaviour of bandgap. The H passivated edge of NA GaAs NRs with different width of nanoribbons provides great flexibility to modulate fundamental bandgap. The transmission coefficient is calculated from which thermal conductance has been calculated forall width of GaAs armchair nanoribbon.

Keywords

Armchair, Bandgap, Conductance, DFT, MGGA, Nanoribbon (NR), Transmission Coefficient.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater., 22, 3906 (2010). Crossref PMid:20706983
  • A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang, Nano Lett., 10, 1271 (2010). Crossref PMid:20229981
  • F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Nat. Photonics, 4, 611 (2010). Crossref
  • N. D. Gupta, J. Vijay, IEEE J. Quant. Electron., 53, 1 (2017). Crossref
  • N. D. Gupta, V. Janyani, G. Singh, H. Tsuda, Proc. Front. Opt. 2015, (2015).
  • N. D. Gupta, V. Janyani, J. Nanoelectron. Optoelectron., 11, 368 (2016). Crossref
  • J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, R. Fasel, Nature, 466,470 (2010). Crossref PMid:20651687
  • T. Ohta, Science, 313, 951 (2006). Crossref PMid:16917057
  • J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, L. M. K. Vandersypen, Nat. Mater. 7, 151 (2008). Crossref PMid:18059274
  • X. Dong, Y. Shi, Y. Zhao, D. Chen, J. Ye, Y. Yao, F. Gao, Z. Ni, T. Yu, Z. Shen, Y. Huang, P. Chen, L. J. Li, Phys. Rev. Lett., 102 (2009).
  • K. Novoselov, V. Fal, L. Colombo, Nature, 490, 192 (2012). Crossref PMid:23060189
  • D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Science, 323, 610 (2009). Crossref PMid:19179524
  • K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, H.-J. Chung, Nature, 479, 338 (2011). Crossref PMid:22094694
  • F. Wang, Z. Wang, Q. Wang, F. Wang, L. Yin, K. Xu, Y. Huang, J. He, Nanotechnology, 26, 292001 (2015). Crossref PMid:26134271
  • S. Das, H. Y. Chen, A. V. Penumatcha, J. Appenzeller, Nano Lett.,13,100 (2013). Crossref PMid:23240655
  • W. Zhang, C.-P. Chuu, J.-K. Huang, C.-H. Chen, M.-L. Tsai, Y.-H. Chang, C.-T. Liang, Y.-Z. Chen, Y.-L. Chueh, J.-H. He, M.-Y. Chou, L.-J. Li, Sci. Rep., 4, 3826 (2014). Crossref PMid:24451916 PMCid:PMC3899643
  • M. Bernardi, M. Palummo, J. C. Grossman, Nano Lett., 13, 3664 (2013). Crossref PMid:23750910
  • T. Roy, M. Tosun, J. S. Kang, A. B. Sachid, S. B. Desai, M. Hettick, C. C. Hu, A. Javey, ACS Nano, 8, 6259 (2014). Crossref PMid:24779528
  • B. Radisavljevic, A. Kis, Nat. Mater., 12, 815 (2013). Crossref PMid:23793161
  • Y. Wang, Y. Chen, H. Li, X. Li, H. Chen, H. Su, Y. Lin, Y. Xu, G. Song, X. Feng, ACS Nano,10 (9), 8199 (2016). PMid:27471774
  • C. Sealy, Nano Today, 11, 539 (2016). Crossref 22. H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, S. Ciraci, Phys Rev B Condens Matter., 80 (2009).
  • Y.-W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett., 97, 216803 (2006). Crossref PMid:17155765
  • B. Mahler, V. Hoepfner, K. Liao, G. A. Ozin, J. Am. Chem. Soc., 136, 14121 (2014). Crossref PMid:25220034
  • A. A. Balmashnov, K. S. Golovanivsky, E. M. Omeljanovsky, A. V. Pakhomov, A. Y. Polyakov, Semicond. Sci. Technol., 5, 242 (1990). Crossref
  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys. Condens. Matter, 21, 395502 (2009). Crossref PMid:21832390
  • J. Perdew, K. Burke, Y. Wang, Phys. Rev. B, 54, 16533 (1996). Crossref
  • K. Laasonen, R. Car, C. Lee, D. Vanderbilt, Phys. Rev. B, 43,6796 (1991). Crossref
  • H. J. Monkhorst, J. D. Pack, Phys. Rev. B, 13, 5188 (1976). Crossref
  • Atomistic ToolKit version 2016.3, Quantum Wise A/S.
  • F. Tran, P. Blaha, Phys. Rev. Lett., 102, 226401 (2009). Crossref PMid:19658882
  • C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B, 58,3641 (1998). Crossref
  • W. G. Schmidt, F. Bechstedt, Phys. Rev. B, 54, 16742 (1996). https://doi.org/10.1103/PhysRevB.54.16742
  • S. Cahangiro, S. Ciraci, Cond-Mat.Mtrl-Sci, 1–9 (2010).
  • S. Adachi, Handbook on Physical Properties of Semiconductors, John Wiley &Sons, Chichester, 2005, p.133.
  • A. Gali, Phys. Rev. B Condens. Matter., 73, 33204 (2006).
  • Z. Li, D. S. Kosov, J. Phys. Chem. B, 110, 9893 (2006). Crossref PMid:16706444
  • Y. T. Yang, R. X. Ding, J. X. Song, Phys. B Condens. Matter, 406, 216 (2011). Crossref
  • H. H. B. Sorensen, P. C. Hansen, D. E. Petersen, S. Skelboe, K. Stokbro, Phys. Rev. B, 79, 205322 (2009). Crossref

Abstract Views: 234

PDF Views: 5




  • Electronic and Transmission Properties of Low Buckled GaAs Armchair Nanoribbons

Abstract Views: 234  |  PDF Views: 5

Authors

B. P. Pandey
Department of Electronics and Communication Engineering, GLA University, Mathura - 281406, Uttar Pradesh, India

Abstract


The electronic and transmission properties of N atom width (N: 4, 8, 12, 16)low-buckled (LB) armchair GaAs hydrogen (H) passivated nanoribbons (NA GaAs NRs) are studied with the help of first-principle theory. In low buckled armchair GaAs nanoribbon, quantum confinement effect is observed due to which all of the investigated NA GaAs NRs with H passivated are found to be semiconducting. The fundamental direct band gap at k-point Г (gamma) have been calculated, which exhibit interesting width dependent (N: 4~16) behaviour of bandgap. The H passivated edge of NA GaAs NRs with different width of nanoribbons provides great flexibility to modulate fundamental bandgap. The transmission coefficient is calculated from which thermal conductance has been calculated forall width of GaAs armchair nanoribbon.

Keywords


Armchair, Bandgap, Conductance, DFT, MGGA, Nanoribbon (NR), Transmission Coefficient.

References





DOI: https://doi.org/10.18311/jsst%2F2017%2F15972