Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Regulation of H+ and K+ Gradients by In Vitro 3,5-Diiodothyronine in Hepatocyte Explants of Hypoxic Air-Breathing Fish Anabas testudineus Bloch


Affiliations
1 Department of Zoology, Inter-University Centre for Evolutionary and Integrative Biology (iCEIB), School of LifeSciences, University of Kerala, Kariavattom, Thiruvananthapuram − 695581, Kerala., India
     

   Subscribe/Renew Journal


Thyroid hormone metabolite 3, 5-diiodothyronine (T2) has been shown to possess physiological actions in vertebrates including fishes. It is, however, not certain if T2 has a role in cation transport in fish hepatocytes, particularly in a stressed condition. We, therefore, tested the in vitro action of T2 on the activities of ion transporters such as Na+ /K+ ATPase, H+ / K+ ATPase, Na+ /NH4 + ATPase, vacuolar H+ -ATPase, Plasma Membrane Ca2+ ATPase (PMCA), mitochondrial Ca2+ and mitochondrial H+-ATPase as these ATPases are known for their roles in maintaining systemic and cellular cation gradients including proton and potassium gradients. Hepatocyte explants of air-breathing fish (Anabas testudineus, Bloch), either in non-stressed or hypoxic condition, were incubated with varied doses of T2 (10-9, 10-8 and 10-7 M) for 15 min and the specific activities of these cation-dependent ATPases were analyzed. We found that T2 exposure evoked higher sensitivity to vacuolar and mitochondrial H+ -ATPases and H+ /K+ ATPase and not to PMCA or mitochondrial Ca2+ ATPase. The data also indicated that T2 has a similar sensitivity to vacuolar and mitochondrial H+ -ATPases and H+ /K+ ATPase in the hepatocytes of both non-stressed and hypoxia-stressed fish. The data thus provide evidence for a direct action of T2 on the regulation of proton and potassium gradients in the hepatocytes of both non-stressed and hypoxicair-breathing fish.


Keywords

Diiodothyronine, Fish, Hypoxia Stress, T2 , Na+ /K+ -ATPase, H+ -ATPase, Ca2+-ATPase, Na+ /NH4 + -ATPase
Subscription Login to verify subscription
User
Notifications
Font Size


  • Lazar MA. Thyroid hormone action: a binding contract. J Clin Invest. 2003; 112:497-499. https://doi: 10.1172/ JCI19479. PMid:12925689 PMCid: PMC171396.
  • Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012; 122:3035-3043. https://doi.org/10.1172/ JCI60047. PMid:22945636 PMCid: PMC3433956.
  • Davis PJ, Goglia F, Leonard JL. Nongenomic actions of thyroid hormone. Nat Rev Endocrinol. 2016; 12:111-121. https://doi.org/10.1038/nrendo.2015.205. PMid:26668118.
  • Hammes SR, Davis PJ. Overlapping nongenomic and genomic actions of thyroid hormone and steroids. Best Pract Res Clin Endocrinol Metab. 2015; 29(4):581-593. https:// doi.org/10.1016/j.beem.2015.04.001. PMid:26303085 PMCid:PMC4976293.
  • Peter VS, Peter MCS. The interruption of thyroid and interrenal and the inter-hormonal interference in fish: does it promote physiologic adaptation or maladaptation? Gen Comp Endocrinol. 2011; 174(3):249-258. https://doi. org/10.1016/j.ygcen.2011.09.018. PMid:22001502.
  • Peter MCS. Understanding the adaptive response in vertebrates: The phenomenon of ease and ease response during post-stress acclimation. Gen Comp Endocrinol. 2013; 181:59-64. https://doi.org/10.1016/j. ygcen.2012.09.016. PMid: 23063668.
  • Peter MCS, Lock RAC, Wendelaar Bonga SE. Evidence for an osmoregulatory role of thyroid hormones in the freshwater Mozambique tilapia, Oreochromis mossambicus. Gen Comp Endocrinol. 2000; 120:157-167. https://doi. org/10.1006/gcen.2000.7542. PMid:11078627.
  • Peter MCS. The role of thyroid hormones in stress response of fish. Gen Comp Endocrinol. 2011; 172(2):198-210. https:// doi.org/10.1016/j.ygcen.2011.02.023. PMid:21362420.
  • Simi S, Peter VS, Peter MCS. Zymosan-induced immune challenge modifies the stress response of hypoxic airbreathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol and thyroid hormone interaction, differential ion transporter functions and nonspecific immune response. Gen Comp Endocrinol. 2017; 251:94-108. https://doi.org/10.1016/j.ygcen.2016.11.009. PMid:27871800.
  • Incerpi S, Davis PJ, Pedersen JZ, Lanni A. Nongenomicactions of Thyroid Hormones. In: Belfiore A., LeRoith D. (eds) Principles of Endocrinology and Hormone Action. Endocrinology. Springer, Cham; 2016. https://doi.org/10.1007/978-3-319-27318-1_32-1.
  • Orozco A, Navarrete-Ramírez P, Olvera A, García-G C. 3,5-Diiodothyronine (T2) is on a role. A new hormone in search of recognition. Gen Comp Endocrinol. 2014; 203:174-180. https://doi.org/10.1016/j.ygcen.2014.02.014. PMid: 24602963.
  • Goglia F. Biological effects of 3, 5-diiodothyronine (T2). Biochem (Mosc). 2005; 70(2):164-172. https://doi. org/10.1007/s10541-005-0097-0. PMid:15807655.
  • Sinha RA, Singh BK, Yen PM. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat Rev Endocrinol. 2018; 14(5):259-269. https://doi.org/10.1038/ nrendo.2018.10. PMid:29472712 PMCid:PMC6013028.
  • Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014; 94:355-382. https:// doi.org/10.1152/physrev.00030.2013. PMid:24692351 PMCid:PMC4044302.
  • Awais D, Shao Y, Ismail-Beigi F. Thyroid hormone regulation of myocardial Na/K-ATPase gene expression. J Mol Cell Cardiol. 2000; 32:1969-1980. https://doi.org/10.1006/ jmcc.2000.1229. PMid:11040102.
  • Lei J, Wendt CH, Fan D, et al. Developmental acquisition of T3-sensitive Na-K-ATPase stimulation by rat alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2007; 292:L6-L14. https://doi.org/10.1152/ajplung.00078.2006. PMid:16951134.
  • Lei J, Mariash CN, Bhargava M, et al. T3 increases Na-KATPase activity via a MAPK/ERK1/2-dependent pathway in rat adult alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2008; 294:L749-L754. https://doi.org/10.1152/ ajplung.00335.2007. PMid:18223161.
  • Lei J, Ingbar DH. Src kinase integrates PI3K/Akt and MAPK/ERK1/2 pathways in T3-induced Na-K-ATPase activity in adult rat alveolar cells. Am J Physiol Lung Cell Mol Physiol. 2011; 301:L765-L771. https://doi.org/10.1152/ ajplung.00151.2011. PMid:21840963.
  • Khanam S. Impact of thyroid on liver metabolism. Endocrinol Res Metab. 2017; 1(2):6.
  • Cicatiello AG, Di Girolamo D, Dentice M. Metabolic effects of the intracellular regulation of thyroid hormone: Old players, new concepts. Front Endocrinol. 2018; 9:474. https://doi.org/10.3389/fendo.2018.00474. PMid: 30254607. PMCid: PMC6141630.
  • Silva JE. Thermogenic mechanisms and their hormonal regulation. Physiol Rev. 2006; 86:435-464. https://doi. org/10.1152/physrev.00009.2005. PMid:16601266.
  • Haber RS, Loeb JN. Stimulation of potassium efflux in rat liver by a low dose of thyroid hormone: evidence for enhanced cation permeability in the absence of Na,KATPase induction. Endocrinology. 1986; 118:207-211. https://doi.org/10.1210/endo-118-1-207. PMid:2416552.
  • Dhanasiri AKS, Fernandes JMO, Kiron V. Liver Transcriptome changes in zebrafish during acclimation to transport-associated stress. PLoS One. 2013; 8(6):e65028. https://doi.org/10.1371/j our na l.p one.0065028. PMid:23762281 PMCid:PMC3677916.
  • Mommsen TP, Vijayan MM, Moon TW. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish. 1999; 9:211-268. https://doi. org/10.1023/A:1008924418720.
  • Hernández-Pérez J, Naderi F, Chivite M, et al. Influence of stress on liver circadian physiology. A study in rainbow trout, Oncorhynchus mykiss, as fish model. Front Physiol. 2019; 10. https://doi.org/10.3389/fphys.2019.00611. PMid:31164837 PMCid:PMC6536609.
  • Chi HC, Tsai CY, Tsai MM, et al. Molecular functions and clinical impact of thyroid hormone-triggered autophagy in liver-related diseases. J Biomed Sci. 2019; 26:24. https://doi. org/10.1186/s12929-019-0517-x. PMid:30849993 PMCid: PMC6407245.
  • Malik R, Hodgson H. The relationship between the thyroid gland and the liver. QJM. 2002; 95(9):559-569. https://doi. org/10.1093/qjmed/95.9.559. PMid:12205333.
  • Moreno M, de Lange P, Lombardi A, et al. Metabolic effects of thyroid hormone derivatives. Thyroid. 2008; 18(2):239-253. https://doi.org/10.1089/thy.2007.0248. PMid:18279024.
  • Lanni A, Moreno M, Lombardi A, et al. Control of energy metabolism by iodothyronines. J Endocrinol Invest. 2001; 24:897-913. https://doi.org/10.1007/BF03343949. PMid:11817716.
  • Silvestri E, Lombardi A, Coppola M, et al. Differential effects of 3,5-diiodo-L-thyronine and 3,5,3’-triiodo-L-thyronine on mitochondrial respiratory pathways in liver from hypothyroid rats. Cell Physiol Biochem. 2018; 47:2471- 2483. https://doi.org/10.1159/000491620. PMid:29990992.
  • Coppola M, Glinni D, Moreno M et al. Thyroid hormone analogues and derivatives: Actions in fatty liver. World J Hepatol. 2014; 6(3):114-129. https://doi.org/10.4254/wjh. v6.i3.114. PMid:24672641 PMCid:PMC3959112.
  • Mangiullo R, Gnoni A, Damiano F, et al. 3,5-diiodo-Lthyronine upregulates rat-liver mitochondrial FoF1-ATP synthase by GA-binding protein/nuclear respiratory factor-2. Biochim Biophys Acta (BBA) - Bioenergetics. 2010; 1797(2):233-240. https://doi.org/10.1016/j. bbabio.2009.10.009. PMid:19878644.
  • Grasselli E, Canesi L, Voci A, et al. Effects of 3,5-diiodo-Lthyronine administration on the liver of high fat diet-fed rats. Exp Biol Med. (Maywood). 2008; 233(5):549-557. https://doi.org/10.3181/0710-RM-266. PMid:18375830.
  • Peter MCS, Leji J, Peter VS. Ambient salinity modifies the action of triiodothyronine in the air-breathing fish Anabas testudineus Bloch: effects on mitochondria-rich cell distribution, osmotic and metabolic regulations. Gen Comp Endocrinol. 2011; 171:225-231. https://doi. org/10.1016/j.ygcen.2011.01.013. PMid: 21295572.
  • Peter MCS, Leji J, Rejitha V, et al. Physiological responses of African catfish (Clarias gariepinus) to water-borne ferric iron: Effects on thyroidal, metabolic and hydromineral regulations. J Endocrinol Reprod. 2008; 12:24-30.
  • Peter MCS, Peter VS. Action of thyroid inhibitor propyl thiouracil on thyroid and interrenal axes in freshwater tilapia, Oreochromis mossambicus Peters. J Endocrinol Reprod. 2009; 13:37-44. https://doi.org/10.18519/ JER/2009/V13/77712.
  • 37. Peter VS, Joshua EK, Bonga WSE, Peter MCS. Metabolic and thyroidal response in air-breathing perch (Anabas testudineus) to water-borne kerosene. Gen Comp Endocrinol. 2007; 152:198-205. https://doi.org/10.1016/j. ygcen.2007.05.015. PMid:17574248.
  • Padron AS, Neto RAL, Pantaleão TU, et al. Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J Endocrinol. 2014; 221(3):415-427. https://doi.org/10.1530/ JOE-13-0502 PMid:24692290 PMCid:PMC4045230.
  • Gayathry R, Peter VS, Peter MCS. Nitric oxide drives mitochondrial energetics in heart and liver mitochondria of hypoxia-stressed climbing perch (Anabas testudineus Bloch). J Endocrinol Reprod. 2018; 22(1):1-14.
  • Babitha GS, Peter MCS. Cortisol promotes and integrates the osmotic competence of the organs in North African catfish (Clarias gariepinus Burchell): Evidence from in vivo and in situ approaches. Gen Comp Endocrinol. 2010; 168(1):14-21. https://doi.org/10.1016/j.ygcen.2010.03.021. PMid: 20347823.
  • Rejitha V, Peter MCS. Adrenaline and triiodothyronine modify the iron handling in the freshwater air-breathing fish Anabas testudineus Bloch: Role of ferric reductase in iron acquisition. Gen Comp Endocrinol. 2013; 181:130- 138. https://doi.org/10.1016/j.ygcen.2012.11.008. PMid: 23168087.
  • Sheetal G, Valsa SP, Peter MCS. In vitro action of matrix metalloproteinases 2 and 9 Inhibitors on Na+ /K+ -ATPase, H+ /K+ -ATPase and PMCA activities in the osmoregulatory epithelia of climbing perch (Anabas testudineus Bloch). 2020; 22. https://doi.org/10.18311/jer/2018/24711.
  • Peter MCS, Mini VS, Bindulekha DS, Peter VS. Short-term in situ effects of prolactin and insulin on ion transport in liver and intestine of freshwater climbing perch (Anabas testudineus Bloch). J Endocrinol Reprod. 2014; 18(1):47- 58. https://doi.org/10.18519/JER/2014/V18/71719.
  • Alexander JB, Ingram GA. A comparison of five of the methods commonly used to measure protein concentration in fish sera. J Fish Biol. 1980; 16:I5-122. https://doi. org/10.1111/j.1095-8649.1980.tb03691.x.
  • Janz DM. Endocrine System. In: The Laboratory Fish. GK Ostrander (ed.), Chap. 25. Academic Press, San Diego; 2000. https://doi.org/10.1016/B978-012529650-2/50016-0.
  • Power DM, Llewellyn L, Faustino M, et al. Thyroid hormones in growth and development of fish. Comp Biochem Physiol. C. 2001; 130:447-459. https://doi. org/10.1016/S1532-0456(01)00271-X.
  • Blanton ML, Specker JL. The hypothalamic-pituitarythyroid (HPT) axis in fish and its role in fish development and reproduction. Crit Rev Toxicol. 2007; 37:97-115. https:// doi.org/10.1080/10408440601123529. PMid:17364706.
  • Giudetti AM, Leo M, Geelen MJH, Gnoni GV. Shortterm stimulation of lipogenesis by 3,5-L-diiodothyronine in cultured rat hepatocytes. Endocrinology. 2005; 146(9):3959-3966. https://doi.org/10.1210/en.2005-0345. PMid:15932927.
  • García-G C, López-Bojorquez L, Nuñez J, et al. 3,5-diiodothyronine in vivo maintains euthyroidal expression of type 2 iodothyroninedeiodinase, growth hormone, and thyroid hormone receptor beta1 in the killifish. Am J Physiol Regul Integr Comp Physiol. 2007; 293(2):R877-883. https://doi.org/10.1152/ ajpregu.00101.2007. PMid:17522123.
  • Mendoza A, Navarrete-Ramírez P, Hernández-Puga G, et al. 3,5-T2 is an alternative ligand for the thyroid hormone receptor β1. Endocrinology. 2013; 154:2948-2958. https:// doi.org/10.1210/en.2013-1030. PMid:23736295.
  • Navarrete-Ramírez P, Luna M, Valverde-R C, Orozco A. 3,5-di-iodothyronine stimulates tilapia growth through an alternate isoform of thyroid hormone receptor β1. J Mol Endocrinol. 2014; 52(1):1-9. https://doi.org/10.1530/JME13-0145. PMid:24031088.
  • Senese R, de Lange P, Petito G, et al. 3,5-diiodothyronine: A novel thyroid hormone metabolite and potent modulator of energy metabolism. Front Endocrinol. 2018; 9:427. https://doi.org/10.3389/fendo.2018.00427. PMid:30090086 PMCid:PMC6068267.
  • Goglia F. The effects of 3,5-diiodothyronine on energy balance. Front Physiol. 2015; 5:528. https://doi:10.3389/ fphys.2014.00528. PMid:25628573 PMCid:PMC4292545.
  • Schreck CB, Tort L. The concept of stress in fish. Fish Physiol. 2016; 35:1-34. https://doi.org/10.1016/B978-0-12- 802728-8.00001-1.
  • Wendelaar Bonga SE. The stress response in fish. Physiol Rev. 1997; 77:591-625. https://doi.org/10.1152/ physrev.1997.77.3.591. PMid: 9234959.
  • Guh YJ, Lin CH, Hwang PP. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. EXCLI Journal. 2015; 14:627-659. https://doi.org/10.17179/ excli2015-246.
  • Griffith MB. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: Teleost fish, crustacea, aquatic insects, and Mollusca. Environ Toxicol Chem. 2017; 36(3):576-600. https://doi.org/10.1002/etc.3676. PMid:27808448 PMCid:PMC6114146.
  • Wong MK, Pipil S, Ozaki H, et al. Flexible selection of diversified Na(+)/K(+)-ATPase α-subunit isoforms for osmoregulation in teleosts. Zool Lett. 2016; 2(1):15. https:// doi.org/10.1186/s40851-016-0050-7. PMid: 27489726 PMCid:PMC4971688.
  • Hiroi J, McCormick SD. New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir Physiol Neurobiol. 2012; 184(3):257-68. https:// doi.org/10.1016/j.resp.2012.07.019. PMid:22850177.
  • Peter MCS, Gayathry R. Nitric oxide synthase (NOS) inhibitor L-NAME activates inducible NOS/NO system and drives multidimensional regulation of Na+ /K+ -ATPase in ionocyte epithelia of immersion-stressed air-breathing fish (Anabas testudineus Bloch). J Exp Zool A: Ecol Integr Physiol. 2021; 335:396-416. https://doi.org/10.1002/ jez.2454. PMid:33734617.
  • Brini M, Carafoli E. The plasma membrane Ca²+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol. 2011; 3(2):a004168. https://doi. org/10.1101/cshperspect.a004168. PMid:21421919 PMCid:PMC3039526.
  • Shull GE. Gene knockout studies of Ca2+-transporting ATPases. Eur J Biochem. 2000; 267:5284-5290. https://doi. org/10.1046/j.1432-1327.2000.01568.x. PMid:10951186.
  • Delgado-Coello B, Mas-Oliva J. Relevance of the plasma membrane calcium-ATPase in the homeostasis of calcium in the fetal liver. Organogenesis. 2014; 10(4):333- 339. https://doi.org/10.1080/15476278.2015.1011918. PMid:25836032 PMCid:PMC4594366.
  • Benkoel L, Dodero F, Hardwigsen J, et al. Effect of ischemiareperfusion on Na+, K+-ATPase expression in human liver tissue allograft: image analysis by confocal laser scanning microscopy. Dig Dis Sci. 2004; 49(9):1387-1393. https://doi.org/10.1023/B:DDAS.0000042235.72622.16. PMid:15481308.
  • Salama A, Morgan IJ, Wood CM. The linkage between Na+ uptake and ammonia excretion in rainbow trout: Kinetic analysis, the effects of (NH4)2SO4 and NH4HCO3 infusion and the influence of gill boundary layer pH. J Exp Biol. 1999; 202:697-709. PMID: 10021323. https://doi. org/10.1242/jeb.202.6.697.
  • Randall DJ, Wilson JM, Peng KW, Kok TWK, Kuah SSL, Chew SF, Lam TJ, Ip YK. The mudskipper, Periophthalmodon schlosseri, actively transports NH4+ against a concentration gradient. Am J Physiol. 1999; 277(6):R1562-R1567. https://doi.org/10.1152/ajpregu.1999.277.6.R1562. PMid:10600900.
  • Knepper MA, Packer R, Good DW. Ammonium transport in the kidney. Physiol Rev. 1989; 69:179 -249. https://doi. org/10.1152/physrev.1989.69.1.179. PMid:2643123.
  • Randall DJ, Ip YK, Chew SF, Wilson JM. Air breathing and ammonia excretion in the giant mudskipper Periophthalmodon schlosseri. Physiol Biochem Zool. 2004; 77:783-788. https://doi.org/10.1086/423745. PMid:15547796.
  • Weihrauch D, Wilkie MP, Walsh PJ. Ammonia and urea transporters in gills of fish and aquatic crustaceans. J Exp Biol. 2009; 212(11):1716-1730. https://doi:10.1242/ jeb.024851. PMid:19448081.
  • Song I, Yamada T, Trent JM. Mapping of the gene encoding the α-subunit of the human H+, K+-ATPase to chromosome 19q13.1 by fluorescent in situ hybridization. Genomics. 1992; 14:547-548. https://doi.org/10.1016/S0888- 7543(05)80266-6.
  • Faller L, Jackson R, Malinowska D, et al. Mechanistic aspects of gastric (H++ K+)-ATPase. Ann N Y Acad Sci. 1982; 402:146-63. https://doi.org/10.1111/j.1749-6632.1982. tb25738.x. PMid:6301328.
  • Choe KP, Verlander JW, Wingo CS, Evans DH. A putative H+-K+-ATPase in the Atlantic stingray, Dasyatis sabina: primary sequence and expression in gills. Am J Physiol Regul Integr Comp Physiol. 2004; 287:R981-R991. https:// doi.org/10.1152/ajpregu.00513.2003. PMid:15217793.
  • Guffey S, Esbaugh A, Grosell M. Regulation of apical H+-ATPase activity and intestinal HCO3− secretion in marine fish osmoregulation. Am J Physiol Regul Integr Comp Physiol. 2011; 301(6):R1682-R1691. https://doi. org/10.1152/ajpregu.00059.2011. PMid:21865541.
  • Piermarini PM, Evans DH. Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a euryhaline stingray (Dasyatis sabina): Effects of salinity and relation to Na(+)/K(+)-ATPase. J Exp Biol. 2001; 204(Pt 19):3251-3259. PMID: 11606599. https://doi.org/10.1242/ jeb.204.19.3251.
  • Perry S, Fryer J. Proton pumps in the fish gill and kidney. Fish Physiol Biochem. 1997; 17:363-369. https://doi. org/10.1023/A:1007746217349.
  • Cipriano DJ, Wang Y, Bond S, et al. Structure and regulation of the vacuolar ATPases. Biochim Biophys Acta. 2008; 1777(7- 8):599-604. https://doi.org/10.1016/j.bbabio.2008.03.013. PMid: 18423392 PMCid:PMC2467516.
  • Baoping W. Analysis of ATPase activity of mitochondria intima in exercise-induced fatigue. Chem Eng Trans. 2018; 64:199-204. https://doi.org/10.3303/CET1864034.
  • Pathak T, Trebak M. Mitochondrial Ca2+ signaling. Pharmacol Ther. 2018; 192:112-123. https://doi. org/10.1016/j.pharmthera.2018.07.001. PMid:30036491 PMCid:PMC6263837.
  • Bruslé J, Anadon GG. The Structure and Function of Fish Liver. In: Munshi J S D. & Dutta HM. (eds.). Fish Morphology. North-Holland, Science Publishers; 1996. p. 77-93. https://doi.org/10.1201/9780203755990-6.
  • Chi H-C, Tsai C-Y, Tsai M-M, et al. Molecular functions and clinical impact of thyroid hormone-triggered autophagy in liver-related diseases. J Biomed Sci, 2019; 26(1). https://doi:10.1186/s12929-019-0517-x. PMid:30849993 PMCid:PMC6407245.
  • Klaren PHM, Geven EJW, Flik G. The Involvement of the Thyroid Gland in Teleost Osmoregulation. In: Baldisserotto B, Mancera JM, Kapoor BG. (Eds.) Fish Osmoregulation, Enfield, NH: Science Publishers; 2007. Chapter 2, p. 35-65. https://doi.org/10.1201/b10994-3.
  • McCormick SD. Endocrine control of osmoregulation in teleost fish. Am Zool. 2001; 41(4):781-794. https://doi. org/10.1093/icb/41.4.781.
  • Cheng S-Y, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010; 31(2):139- 170. https://doi:10.1210/er.2009-0007. PMid:20051527 PMCid: PMC2852208.
  • Scapin S, Leoni S, Spagnuolo S, et al. Short-term effects of thyroid hormones on Na+-K+-ATPase activity of chick embryo hepatocytes during development: focus on signal transduction. Am J Physiol Cell Physiol. 2009; 296(1):C4- C12. https://doi.org/10.1152/ajpcell.90604.2007. PMid: 18829895.
  • Incerpi S. Actions of thyroid hormone on ion transport. Curr Opin Endocrinol Diabetes. 2002; 9(5):381-386. https://doi.org/10.1097/00060793-200210000-00004.
  • Cavallo A, Gnoni A, Conte E, et al. 3,5-diiodo-L-thyronine increases FoF1-ATP synthase activity and cardiolipin level in liver mitochondria of hypothyroid rats. J Bioenerg Biomembr. 2011; 43(4):349-57. https://doi.org/10.1007/ s10863-011-9366-3. PMid:21739248.
  • Olvera A, Martyniuk CJ, Buisine N, et al. Differential transcriptome regulation by 3,5-T2 and 3′,3,5-T3 in brain and liver uncovers novel roles for thyroid hormones in tilapia. Sci Rep. 2017; 7:15043. https:// doi.org/10.1038/s41598-017-14913-9. PMid:29118400 PMCid:PMC5678081.
  • Shameena B, Sheelu V, Leena S, Oommen OV. 3,5,3’-Triiodothyronine (T3) and 3’,5’-diiodothyrone (T2) have short-term effects on lipid metabolism in a teleost Anabas testudineus (Bloch): Evidence from enzyme activities. Endocr Res. 2000; 26:431-44. https://doi. org/10.3109/07435800009066178. PMid: 11019906.
  • Benkoel L, Dodero F, Hardwigsen J, et al. Effect of ischemiareperfusion on Na+,K+-ATPase expression in human liver tissue allograft: Image analysis by confocal laser scanning microscopy. Dig Dis Sci. 2004; 49(9):1387-1393. https://doi.org/10.1023/B:DDAS.0000042235.72622.16. PMid:15481308.
  • Giorgi C, Romagnoli A, Pinton P, Rizzuto R. Ca2+ signaling, mitochondria and cell death. Curr Mol Med. 2008; 8(2):119- 130. https://doi.org/10.2174/156652408783769571. PMid:18336292.
  • Hummerich H, Soboll S. Rapid stimulation of calcium uptake into rat liver by L-tri-iodothyronine. Biochem J. 1989; 258(2):363-367. https://doi.org/10.1042/bj2580363. PMid:2705987 PMCid:PMC1138370.
  • Viscovo AD, Secondo A, Esposito A, et al. Intracellular and plasma membrane-initiated pathways involved in the [Ca2+]i elevations induced by iodothyronines (T3 and T2) in pituitary GH3 cells. Am J Physiol Endocrinol Metab. 2012; 302(11):E1419-4130. https://doi.org/10.1152/ ajpendo.00389.2011. PMid:22414808.

Abstract Views: 109

PDF Views: 0




  • Regulation of H+ and K+ Gradients by In Vitro 3,5-Diiodothyronine in Hepatocyte Explants of Hypoxic Air-Breathing Fish Anabas testudineus Bloch

Abstract Views: 109  |  PDF Views: 0

Authors

S. Aswathi
Department of Zoology, Inter-University Centre for Evolutionary and Integrative Biology (iCEIB), School of LifeSciences, University of Kerala, Kariavattom, Thiruvananthapuram − 695581, Kerala., India
Valsa S. Peter
Department of Zoology, Inter-University Centre for Evolutionary and Integrative Biology (iCEIB), School of LifeSciences, University of Kerala, Kariavattom, Thiruvananthapuram − 695581, Kerala., India
M. C. Subhash Peter
Department of Zoology, Inter-University Centre for Evolutionary and Integrative Biology (iCEIB), School of LifeSciences, University of Kerala, Kariavattom, Thiruvananthapuram − 695581, Kerala., India

Abstract


Thyroid hormone metabolite 3, 5-diiodothyronine (T2) has been shown to possess physiological actions in vertebrates including fishes. It is, however, not certain if T2 has a role in cation transport in fish hepatocytes, particularly in a stressed condition. We, therefore, tested the in vitro action of T2 on the activities of ion transporters such as Na+ /K+ ATPase, H+ / K+ ATPase, Na+ /NH4 + ATPase, vacuolar H+ -ATPase, Plasma Membrane Ca2+ ATPase (PMCA), mitochondrial Ca2+ and mitochondrial H+-ATPase as these ATPases are known for their roles in maintaining systemic and cellular cation gradients including proton and potassium gradients. Hepatocyte explants of air-breathing fish (Anabas testudineus, Bloch), either in non-stressed or hypoxic condition, were incubated with varied doses of T2 (10-9, 10-8 and 10-7 M) for 15 min and the specific activities of these cation-dependent ATPases were analyzed. We found that T2 exposure evoked higher sensitivity to vacuolar and mitochondrial H+ -ATPases and H+ /K+ ATPase and not to PMCA or mitochondrial Ca2+ ATPase. The data also indicated that T2 has a similar sensitivity to vacuolar and mitochondrial H+ -ATPases and H+ /K+ ATPase in the hepatocytes of both non-stressed and hypoxia-stressed fish. The data thus provide evidence for a direct action of T2 on the regulation of proton and potassium gradients in the hepatocytes of both non-stressed and hypoxicair-breathing fish.


Keywords


Diiodothyronine, Fish, Hypoxia Stress, T2 , Na+ /K+ -ATPase, H+ -ATPase, Ca2+-ATPase, Na+ /NH4 + -ATPase

References





DOI: https://doi.org/10.18519/jer%2F2021%2Fv25%2F215477