The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

   Subscribe/Renew Journal


Internal combustion engines are found to be extensively used in both mobile and stationary applications. The major drawbacks in diesel engines are the release of harmful gases like HC, CO, NOx and PM into atmosphere. There is several pre combustion and post combustion techniques are available to control these emissions effectively. Although CO2 emissions from I.C engines considered as a regulated emission but it is a leading contributor towards Greenhouse gases. In this work a numerical investigation on backpressure was carried out by varying porosity factor of activated carbon. Activated Carbon seems to be viable substance to capture CO2 emission from diesel exhaust. To evaluate the backpressure an analysis was carried out using CFD ANSYS fluent software. In the present investigation an analysis is carried out by placing activated carbon at three different variations. Then the analysis are done by varying three different porosity percentages 30,35 and 45 by placing activated carbon at three different locations. Final study reveals that activated carbon placed at PC35-3 layout shows optimum backpressure and high filtration efficiency while compared with other two layouts.

Keywords

Carbon Dioxide, Backpressure, CFD ANSYS, Filtration Efficiency.
User
Subscription Login to verify subscription
Notifications
Font Size