Open Access Open Access  Restricted Access Subscription Access

A Comparison of Blood Biochemical Parameters as a Tool to Measure Welfare in Free-ranging Red Deer (Cervus elaphus elaphus) after Chemical and Physical Restraint


Affiliations
1 Dipartimento di Scienze Veterinarie-Università di Pisa, Italy
2 DEFeNS-Università di Milano, Italy
3 IRSEA, Institut de Recherche en Sémiochimie et Ethologie Appliquée, Apt, France
 

Eighteen red deer were captured in box traps and then physically restrained in an immobilizing box; three red deer were captured twice, once by chemical restraint (anesthetized with a mixture of Xylazine, Tiletamine and Zolazepam) and once in the immobilizing box. It was found that microhaematocrit, total erythrocyte and leukocyte counts, as well as plasma cortisol, were higher after the physical restraint. Anserine and 3-methyl-L-histidine concentrations were higher after the physical restraint in animals undergoing both captures. Data supports previous studies indicating that the physical restraint after capture is more stressful than the chemical one. Anserine and 3-methyl-L-histidine were higher after the physical restraint in red deer undergoing both methods, suggesting that measuring plasma aminoacyl–imidazole dipeptides and their components may be important in stressed animals prone to capture myopathy.

Keywords

Aminoacyl-Imidazole Dipeptides, Anesthesia, Animal Welfare, Red Deer, Restraint, Stress.
User
Notifications
Font Size

  • VerCauteren, K. C., Beringer, J. and Hygnstrom, S. E., Use of netted cage traps for capturing white-tailed deer. In Mammal Trapping (ed. Proulx), Alpha Wildlife Research & Management Ltd, Sherwood Park, Canada, 1999, pp. 155-164.
  • Marco, I. and Lavín, S., Effect of the method of capture on the hematology and blood chemistry of red deer (Cervus elaphus). Vet. Sci., 1999, 66, 81-84.
  • Wesson, J. A., Scalon, P. F., Kirpatrick, R. L. and Mosby, H. S., Influence of chemical immobilization and physical restraint on packed cell volume, total protein, glucose, and blood urea nitrogen in blood of white-tailed deer. Can. J. Zool., 1979, 57, 756-767.
  • Wesson, J. A., Scalon, P. F., Kirpatrick, R. L., Mosby, H. S. and Butcher, R. L., Influence of chemical immobilization and physical restraint on steroid hormone levels in blood of white-tailed deer. Can. J. Zool., 1979, 57, 768-776.
  • Cross, J. P., Mackintosh, C. G. and Griffin, J. F. T., Effect of physical restraint and xylazine sedation on haematological values in red deer (Cervus elaphus). Res. Vet. Sci., 1988, 45, 281-286.
  • DeNicola, A. J. and Swihart, R. K., Capture-induced stress in white-tailed deer. Wildl. Soc. B, 1997, 25, 500-503.
  • Kocan, A., Glenn, B. L., Thedford, T. R., Doyle, R., Waldrup, K., Kubat, G. and Shaw, M. G., Effects of chemical immobilization on hematologic and serum chemical values in captive white-tailed deer. J. Am. Vet. Med. Assoc., 1981, 179, 1153-1156.
  • Peinado, V., Fernandez-Arias, A., Viscor, G. and Palomeque, J., Hematology of Spanish ibex (Capra pyrenaica hispanica) restrained by physical or chemical means. Vet. Rec., 1993, 132, 580-583.
  • Webb, S. L., Lewis, J. S., Hewitt, D. J., Hellickson, M. W. and Bryant, F. C., Assessing the helicopter and net gun as a capture technique for white-tailed deer. J. Wildl. Manage., 2008, 72, 310- 314.
  • Arnemo, J. M., Negard, T. and Søli, N. E., Chemical capture of free-ranging red deer (Cervus elaphus) with medetomidineketamine. Rangifer, 1994, 14, 123-127.
  • Rosef, O., Nystoyl, H. L., Solenes, T. and Arnemo, J. M., Hematological and serum biochemical reference values in free-ranging red deer (Cervus elaphus atlanticus). Rangifer, 2004, 24, 79-85.
  • Taillon, J. and Côté, S. D., Social rank and winter forage quality affect aggressiveness in white-tailed deer fawns. Anim. Behav., 2007, 74, 265-275.
  • Griffin, J. F. T., Stress and immunity: a unifying concept. Vet. Immunol. Immunopathol., 1989, 20, 263-312.
  • Griffin, J. F. T. and Thomson, A. J., Farmed deer: a large animal model for stress. Domest. Anim. Endocrinol., 1998, 15, 445-456.
  • Beringer, J., Hansen, L. P., Wilding, W., Fischer, J. and Sheriff, S. L., Factors affecting capture myopathy in white-tailed deer. J. Wildl. Manage., 1996, 60, 373-380.
  • Conner, M. C., Soutiere, E. C. and Lancia, R. A., Drop-netting deer: costs and incidence of capture myopathy. Wildl. Soc. Bull., 1987, 15, 434-438.
  • Montané, J., Marco, I., Manteca, X., Lopez, J. and Lavín, S., Delayed acute capture myopathy in three Roe Deer. J. Vet. Med. A, 2002, 49, 93-98.
  • DelGiudice, G. D., Sampson, B. A., Kuehn, D. W., Powell, M. C. and Fieberg, J., Understanding margins of safe capture, chemical immobilization, and handling of free-ranging white-tailed deer. Wildl. Soc. Bull., 2005, 33, 677-687.
  • Bateson, P. and Bradshaw, E. L., Physiological effects of hunting red deer (Cervus elaphus). Proc. R. Soc. Lond. Biol. Sci., 1997, 264, 1707-1714.
  • Cuomo, A., Lo Stress da cattura negli ungulati selvatici. In Proceedings of third SIVSANC National Congress, Teramo, Italy, 2006, pp. 33-35.
  • Chapple, R. S., English, A. W., Mulley, R. C. and Lepherd, E. E., Hematology and serum biochemistry of captive unsedated chital deer (Axis axis) in Australia. J. Wildl. Dis., 1991, 27, 396-406.
  • Taylor, J. A., Leukocyte responses in ruminants. In Schalm’s Veterinary Hematology (eds Feldman, B. F., Zinkl, J. G. and Jain, N. C.), Lippincott Williams & Wilkins, Philadelphia, Pennsylvania, 2000, 5th edn, pp. 391-404.
  • Montané, J., Marco, I., Lopez-Olvera, J., Perpinan, D., Manteca, X. and Lavin, S., Effects of acepromazine on capture stress in roe deer (Capreolus capreolus). J. Wildl. Dis., 2003, 39, 375-386.
  • Waas, J. R., Ingram, J. R. and Matthews, L. R., Real-time physiological responses of red deer to translocations. J. Wildl. Manage., 1999, 63, 1152-1162.
  • Aristoy, M. C., Soler, C. and Toldrà, F., A simple, fast and reliable methodology for the analysis of histidine dipeptides as markers of presence of animal origin proteins in feed for ruminants. Food. Chem., 2004, 84, 485-491.
  • Ducci, M. et al., Concentrations of carnosine, anserine, L-histidine and 3-methyl histidine in boar spermatozoa and sheep milk by a modified HPLC method. Pol. J. Vet. Sci., 2006, 9, 159-163.
  • Dunnet, M. and Harris, R. C., High-performance liquid chromatographic determination of imidazole dipeptides, histidine, lmethylhistidine and 3-metilhistidine in equine and camel muscle and individual muscle fibres. J. Chromatogr. B, 1997, 88, 47-55.
  • Kurisaki, E. and Hiraiwa, K., A simple analysis of carnosine and anserine - its application to traumatic shock. Fukushima J. Med. Sci., 1988, 34, 11-19.
  • Dunnett, M., Harris, R. C., Dunnett, C. E. and Harris, P. A., Plasma carnosine concentration: diurnal variation and effects of age, exercise and muscle damage. Equine. Vet. J. Suppl., 2002, 34, 283-287.
  • Harris, C. and Milne, G., The urinary excretion of N-methyl histidine by cattle: validation as an index of muscle protein breakdown. Br. J. Nutr., 1981, 45, 411-422.
  • Haverberg, L. N., Omstedt, P. T., Muno, H. N. and Young, V. R., N-Methylhistidine content of mixed proteins in various rat tissues. BBA-Protein. Struct. M, 1975, 405, 67-71.
  • Young, V. R., Alexis, S. C., Baliga, B. S., Munro, H. M. and Muecke, W., Metabolism of administered 3-methylhistidine. J. Biol. Chem., 1972, 247, 3592-3600.
  • Douglas, S. A., Stevenson, K. E., Knowles, P. J. and Bunn, S. J., Characterization of catecholamine release from deer adrenal medullary chromaffin cells. Neurosci. Lett., 2008, 445, 126-129.
  • Anderson, M. J., A new method for non-parametric multivariate analysis of variance. Austral. Ecol., 2001, 26, 32-46.
  • Anderson, M. J., PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. Department of Statistics, University of Auckland, New Zealand, 2005; https://www.stat.auckland.ac.nz/~mja/prog/PERMANOVA_UserNotes.pdf
  • Clarke, K. R. and Gorley, R. N., PRIMER v6. User Manual/Tutorial, PRIMER-E: Plymouth, UK, 2006.
  • Aitchison, J., The statistical analysis of compositional data (with discussion). J. R. Stat. Soc. B, 1982, 44, 139-177.
  • Hattingh, J., Pitts, N. I. and Ganhao, M. F., Immediate response to repeated capture and handling of wild impala. J. Exp. Zool., 1988, 248, 109-112.
  • Wolkers, J., Wensing, T. and Gischolar_main Bruinderink, G. W., Sedation of wild boar (Sus scrofa) and red deer (Cervus elaphus) with medetomidine and the influence on some hematological and serum biochemical variables. Vet. Quart., 1994, 16, 7-9.
  • Topal, A., Gul, N. Y. and Yanik, K., Effect of capture method on hematological and serum biochemical values of Red Deer (Cervus elaphus) in Turkey. J. Anim. Vet. Adv., 2010, 9, 1227-1231.
  • Zieziulewicz, T. J., Mondal, T. K., Gao, D. and Lawrence, D. A., Stress-induced effects, which inhibit host defenses, alter leukocyte trafficking. Cell Stress Chaperones, 2013, 18, 279-291.
  • Bubenik, G. A. and Bartos, L., Cortisol levels in red deer (Cervus elaphus) and fallow deer (Dama dama) after an acute ACTH administration. Can. J. Zool., 1993, 71, 2258-2261.
  • Haulton, S. M., Porter, W. F. and Rudolph, B. A., Evaluating 4 methods to capture white-tailed deer. Wildl. Soc. B, 2001, 29, 255-264.
  • Gardner, M. L., Illingworth, K. M., Kelleher, J. and Wood, D., Intestinal absorption of the intact peptide carnosine in man, and comparison with intestinal permeability to lactulose. J. Physiol., 1991, 439, 411-422.
  • Long, C. L., Haverberg, L. N., Young, V. R., Kinney, J. M., Munro, H. N. and Geiger, J. W., Metabolism of 3-methylhistidine in man. Metabolism, 1975, 24, 929-935.
  • Sitton, N. G., Dixon, J. S., Astbury, C., Francis, R. J., Bird, H. A. and Wright, V., Kinetic investigations into the possible cause of low serum histidine in rheumatoid arthritis. Ann. Rheum. Dis., 1988, 47, 48-52.
  • Peñafiel, R., Ruzafa, C., Monserrat, F. and Cremades, A., Genderrelated differences in carnosine, anserine and lysine content of murine skeletal muscle. Amino Acids, 2004, 26, 53-58.

Abstract Views: 187

PDF Views: 88




  • A Comparison of Blood Biochemical Parameters as a Tool to Measure Welfare in Free-ranging Red Deer (Cervus elaphus elaphus) after Chemical and Physical Restraint

Abstract Views: 187  |  PDF Views: 88

Authors

Chiara Mariti
Dipartimento di Scienze Veterinarie-Università di Pisa, Italy
Francesca Iacobelli
Dipartimento di Scienze Veterinarie-Università di Pisa, Italy
Eva Ricci
Dipartimento di Scienze Veterinarie-Università di Pisa, Italy
Marco Fusi
DEFeNS-Università di Milano, Italy
Manuel Mengoli
IRSEA, Institut de Recherche en Sémiochimie et Ethologie Appliquée, Apt, France
Alessandro Cozzi
IRSEA, Institut de Recherche en Sémiochimie et Ethologie Appliquée, Apt, France
Angelo Gazzano
Dipartimento di Scienze Veterinarie-Università di Pisa, Italy

Abstract


Eighteen red deer were captured in box traps and then physically restrained in an immobilizing box; three red deer were captured twice, once by chemical restraint (anesthetized with a mixture of Xylazine, Tiletamine and Zolazepam) and once in the immobilizing box. It was found that microhaematocrit, total erythrocyte and leukocyte counts, as well as plasma cortisol, were higher after the physical restraint. Anserine and 3-methyl-L-histidine concentrations were higher after the physical restraint in animals undergoing both captures. Data supports previous studies indicating that the physical restraint after capture is more stressful than the chemical one. Anserine and 3-methyl-L-histidine were higher after the physical restraint in red deer undergoing both methods, suggesting that measuring plasma aminoacyl–imidazole dipeptides and their components may be important in stressed animals prone to capture myopathy.

Keywords


Aminoacyl-Imidazole Dipeptides, Anesthesia, Animal Welfare, Red Deer, Restraint, Stress.

References





DOI: https://doi.org/10.18520/cs%2Fv116%2Fi2%2F319-325