The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Zinc malnutrition poses a major health issue for human beings globally. Agronomic bio-fortification explores the feasibility to control the zinc deficiency related disorders of the human population. Field experiment was conducted in a red and lateritic soil of Ranchi on 23 wheat cultivars with soil and foliar applications of ZnSO4 ⋅ 7H2O. Zinc content of wheat grain increased from 38.86 to 77.17 mg/kg with soil application and to 76.49 mg/kg with soil + foliar application of Zn. Total Zn uptake by wheat (grain + straw) cultivars with soil + foliar application of Zn was significantly higher in short (933 g/ha) and long (960 g/ha) duration cultivars compared to that with soil application. Apparent Zn recovery in wheat also improved with soil + foliar application of Zn fertilizer, suggested that agronomic bio-fortification of zinc is possible in wheat and can prevent Zn malnutrition in human beings to a considerable extent.

Keywords

Agronomic, Biofortification, Triticum Aestivum L., Red And Lateritic Soil, Zinc Deficiency.
User
Notifications
Font Size