Open Access Open Access  Restricted Access Subscription Access

Transgenics in Ornamental Crops:Creating Novelties in Economically Important Cut Flowers


Affiliations
1 Department of Horticulture, G.B. Pant University of Agriculture and Technology, Pantnagar 263 145, India
 

Development of transgenics is the need of the modern era of plant breeding, as they possess the potential to incorporate those characters in crop varieties which are either difficult or impossible through conventional breeding approaches. In case of ornamental crops, the progress made in transgenic breeding is not that impressive like in cereals, pulses and vegetables, but the initiatives taken and advancements made have implicated the bright future of this technology in ornamental crops. Improved morphology, flower colour, resistance and fragrance are some of the desired novel traits in ornamental crops where transgenic approaches need to intervene. Transgenic breeding in major cut-flower crops like rose, chrysanthemum, gladiolus and carnation has provided avenues for incorporation of novel traits in other ornamental crops as well and has made such crops an ideal target for application of other advanced technologies.

Keywords

Cut Flowers, Ornamental Crops, Novel Traits, Transgenics.
User
Notifications
Font Size

  • Chandler, S. and Brugliera, F., Biotechnology in floriculture. Biotechnol. Lett., 2011, 33, 207–214.
  • Da Silva, J. A. T., Chin, D. P., Van, P. T. and Mii, M., Transgenic orchids. Sci. Hortic., 2011, 130, 673–680.
  • Shibata, M., Importance of genetic transformation in ornamental plant breeding. Plant Biotechnol., 2008, 25, 3–8.
  • Chandler, S., Genetically engineered ornamental plants: regulatory hurdles to commercialization. ISB News Report, 2013.
  • Alston, J. M., Bradford, K. J. and Kalaitzandonakes, N., The economics of horticultural biotechnology. J. Crop Improv., 2006, 18, 413–431.
  • Hanks, G., A review of production statistics for the cut flower and foliage sector 2015 (part of AHDB Horticulture funded project PO BOF 002a). The National Cut Flower Centre, AHDB Horticulture, 2015, p. 102.
  • Casanova, E., Trillas, M. I., Moysset, L. and Vainstein, A., Influence of rol genes in floriculture. Biotechnol. Adv., 2005, 23(1), 3–39.
  • Christou, P., Genetic transformation of crop plants using microprojectile bombardment. Plant J., 1992, 2, 275–281.
  • Chandler, S. F. and Sanchez, C., Genetic modification; the development of transgenic ornamental plant varieties. Plant Biotechnol. J., 2012, 10, 891–903.
  • Aragao, F. J. L. and Cid, L. P. B., Genetic engineering in floricultural plants. In Floriculture, Ornamental and Plant Biotechnology, Advances and Topical Issues (Vol. II) (ed. Teixeira da Silva, J. A.), Global Science Books Ltd, UK, 2006, pp. 1–8.
  • Vergne, P., Maene, M., Gabant, G., Chauvet, A., Debener, T. and Bendahmane, M., Somatic embryogenesis and transformation of the diploid Rosa chinensis cv Old Blush. Plant Cell Tiss. Organ Cult., 2010, 100, 73–81.
  • Firoozabady, E., Noriega, C., Sondahl, M. R. and Robinson, K. E. P., Genetic transformation of rose (Rosa hybrida cv. Royalty) via Agrobacterium tumefaciens. In Vitro, 1991, 27, 154A.
  • Firoozabady, E., Moy, Y., Courtney-Gutterson, N. and Robinson, K., Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Nature Biotechnol., 1994, 12, 609–613.
  • Schum, A. and Hofmann, K., Use of isolated protoplasts in rose breeding. Acta Hortic., 2001, 547, 35–44.
  • Condliffe, P. C., Davey, M. R., Brian, P. J., Koehorst-van Putten, H. and Visser, P. B., An optimised protocol for rose transformation applicable to different cultivars. Acta Hortic., 2003, 612, 115–120.
  • Kim, C. K., Chung, J. D., Park, S. H., Burrell, A. M., Kamo, K. K. and Byrne, D. H., Agrobacterium tumefaciens-mediated transformation of Rosa hybrida using the green fluorescent protein (GFP) gene. Plant Cell Tiss. Organ Cult., 2004, 78(2), 107–111.
  • Marchant, R., Biotechnological approaches to rose breeding. Ph D thesis, University of Nottingham, UK, 1994, p. 224.
  • Marchant, R., Power, J. B., Lucas, J. A. and Davey, M. R., Biolistic transformation of rose (Rosa hybrida L.). Ann. Bot., 1998, 81, 109–114.
  • Debener, T. and Byrne, D. H., Disease resistance breeding in rose: current status and potential of biotechnological tools. Plant Sci., 2014; http://dx.doi.org/10.1016/j.plantsci.2014.04.005
  • Marchant, R., Davey, M. R., Lucas, J. A., Lamb, C. J., Dixon, R. A. and Power, J. B., Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosa Wolf). Mol. Breed., 1998, 4, 187–194; doi: 10.1023/A:1009642707505.
  • Dohm, A., Ludwig, C., Schilling, D. and Debener, T., Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases. Acta Hortic., 2002, 572, 105–111.
  • Li, X., Gasic, K., Cammue, B., Broekaert, W. and Korban, S. S., Transgenic rose lines harboring an antimicrobial gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta, 2003, 218, 226–232.
  • Chen, J. R. et al., DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China rose (Rosa chinensis Jacq.). Plant Growth Regul., 2010, 60, 199–211.
  • Souq, F. et al., Genetic transformation of roses, 2 examples: one on morphogenesis, the other on anthocyanin biosynthetic pathway. Second International Symposium on Roses. Acta Hortic., 1996, 424, 381–388.
  • van der Salm, T. P. M., van der Toorn, C. J. G., Bouwer, R., Hanish ten Cate, C. H. and Don, H. J. M., Production of ROL gene transformed plants of Rosa hybrida L. and characterisation of their ischolar_maining ability. Mol. Breed., 1997, 3, 39–47.
  • Ito, H., Ochiai, M., Kato, H., Shiratake, K., Takemoto, D., Otagaki, S. and Matsumoto, S., Rose Phytoene Desaturase gene silencing by apple latent spherical virus vectors HortScience, 2012, 47(9), 1278–1282.
  • Katsumoto, Y. et al., Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol., 2007, 48, 589–1600.
  • Zakizadeh, H., Lutken, H., Sriskandarajah, S., Serek, M. and Muller, R., Transformation of miniature potted rose (Rosa hybrida cv. Linda) with PSAG12-ipt gene delays leaf senescence and enhances resistance to exogenous ethylene. Plant Cell Rep., 2013, 32, 195–205.
  • Terefe-Ayana, D. et al., Mining disease-resistance genes in roses: functional and molecular characterization of the Rdr1 locus. Front. Plant Sci., 2011, 2, 35.
  • Biber, A., Kaufmann, H., Linde, M., Spiller, M., Terefe, D. and Debener, T., Molecular markers from a BAC contig spanning the Rdr1 locus: a tool for marker-assisted selection in roses. Theor. Appl. Genet., 2010, 120, 765–773.
  • Koning-Boucoiran, C. F. S., Smulders, M. J. M., Krens, F. A., Esselink, G. D. and Maliepaard, C., SNP genotyping in tetraploid cut roses, Acta Hortic., 2012, 953, 351–356.
  • Datta, S. K., Success story of induced mutagenesis for development of new ornamental varieties. In Bioremediation, Biodiversity and Bioavailability: Induced Mutagenesis in Crop Plants (eds Kozgar, M. I. and Khan, S.), 2012, vol. 6 (Special Issue 1), pp. 15–26.
  • Teixeira da Silva, J. A. and Kulus, D., Chrysanthemum biotechnology: discoveries from the recent literature. Folia Hortic., 2014, 26(2), 67–77.
  • Annandana, S., Mlynarova, L., Udayakumar, K., de Jong, J. and Nap, J. P., Potato Lhca3. St.1 promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMVbased promoters. Mol. Breed., 2001, 8, 335–344.
  • Lee S. Y. et al., Phenotypic and molecular characteristics of second clone (T0V2) plants of the LeLs-antisense gene–transgenic chrysanthemum line exhibiting non-branching. J. Plant Biotechnol., 2013, 40, 192–197.
  • Huh, Y. J., Han, B. H., Park, S. K., Lee, S. Y., Kil, M. J. and Pak, C. H., Inhibition of chrysanthemum axillary buds via transformation with the antisense tomato lateral suppressor gene is season dependent. Hortic. Environ. Biotechnol., 2013, 54(3), 280–287.
  • Kazeroonian1, R., Mousavi, A., Kalatejari, S. and Tohidfar, M., Using leaf explants for transformation of Chrysanthemum morifolium Ramat mediated by Agrobacterium tumefaciens. Int. J. Biosci., 2015, 6(4), 124–132.
  • Hosokawa, M., Hossain, M. M., Takemoto, T. and Yazawa, S., Particle-gun wounding of explants with and without plant-growth regulators effectively induces shoot formation in African violet. Plant Tiss. Cult Biotechnol., 1998, 4, 35–41.
  • de Jong, J., Rademaker, W. and Ohishi, K., Agrobacterium-mediated transformation of chrysanthemum. Plant Tiss. Cult. Biotechnol., 1995, 1, 38–42.
  • Lowe, J. M., Davey, M. R., Power, J. B. and Blundy, K. S., A study of some factors affecting Agrobacterium transformation and plant regeneration of Dendranthema grandiflora Tzvelev (syn. Chrysanthemum morifolium Ramat.). Plant Cell Tiss. Organ Cult., 1993, 33, 171–180.
  • Urban, L. A., Sherman, J. M., Moyer, J. W. and Daub, M. E., High frequency shoot regeneration and Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora). Plant Sci., 1994, 98, 69–79.
  • Aida, R., Nagaya, S., Yoshida, K., Kishimoto, S., Shibata, M. and Ohmiya, A., Efficient transgene expression in chrysanthemum, Chrysanthemum morifolium Ramat., with the promoter of a gene for tobacco elongation factor 1 protein. Jpn. Agric. Res. Q., 2005, 39, 269–274.
  • Mitiouchkina, T. Y. and Dolgov, S. V., Modification of chrysanthemum flower and plant architecture by rolC gene from Agrobacterium rhizogenes introduction. Acta Hortic., 2000, 508, 163–169.
  • Sherman, J. M., Moyer, J. W. and Daub, M. E., Tomato Spotted Wilt Virus resistance in chrysanthemum expressing the viral nucleocapsid gene. Plant Dis., 1998, 82, 407–414.
  • Mitiouchkina, T. Y., Firsov, A. P. and Dolgov, S. V., Transgenic crysanthemum (sic) plants transformed with the gene encoding for the virus B coat protein. Russ. Agric. Sci., 2013, 39(5–6), 431–434.
  • Takatsu, Y., Nishizawa, Y., Hibi, T. and Akutsu, K., Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci. Hortic., 1999, 82, 113–123.
  • Sen, S., Kumar, S., Ghani, M. and Thakur, M., Agrobacterium mediated genetic transformation of chrysanthemum (Dendran-thema grandiflora Tzvelev) with rice chitinase gene for improved resistance against Septoria obese. Plant Pathol. J., 2013, 12(1), 1–10.
  • Xu, G., Chen, S. and Chen, F., Transgenic chrysanthemum plants expressing a Harpin Xoo gene demonstrate induced resistance to alternaria leaf spot and accelerated development. Russ. J. Plant Physiol., 2010, 57(4), 548–553.
  • Valizadeh, M., Deraison, C., Kazemitabar, S. K., Rahbe, Y. and Jongsma, M. A., Aphid resistance in florist’s chrysanthemum (Chrysanthemum morifolium Ramat.) induced by sea anemone equistatin overexpression. Afr. J. Biotechnol., 2013, 12(50), 6922–6930.
  • Aharoni, A. et al., Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell, 2003, 15, 2866–2884.
  • Yang, L., Integration of host plant resistance and biological control: using Arabidopsis–insect interactions as a model system. Ph D thesis, Wageningen University, Wageningen, The Netherlands, 2008, pp. 54–70.
  • Yang, T., Stoopen, G., Thoen, M., Wiegers, G. and Jongsma, M. A., Chrysanthemum expressing a linalool synthase gene ‘smells good’, but ‘tastes bad’ to western flower thrips. Plant Biotechnol. J., 2013, 11, 875–882.
  • Shinoyama, H., Mitsuhara, I., Ichikawa, H., Kato, K. and Mochizuki. A., Transgenic chrysanthemums (Chrysanthemum morifolium Ramat.) carrying both insect and disease resistance. Acta Hortic., 2015, 1087, 485–498.
  • Yin, D. M., Ni, D., Song, L. L. and Zhang, Z. G., Isolation of an alcohol dehydrogenase cDNA from and characterization of its expression in chrysanthemum under waterlogging. Plant Sci., 2013, 212, 48–54.
  • Higuchi, Y., Narumi, T., Oda, A., Nakano, Y., Sumitomo, K., Fukai, S. and Hisamatsu, T., The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc. Natl. Acad. Sci. USA, 2013, 110(42), 17137–17142.
  • Sumitomo, K., Narumi, T., Shigeru, S. and Tamotsu, H., Involvement of the ethylene response pathway in dormancy induction in chrysanthemum. J. Exp. Bot., 2008, 59(15), 4075–4082.
  • Shao, H. S., Li, J. H., Zheng, X. Q. and Chen, S. F., Cloning of the LFY cDNA from Arabidopsis thaliana and its transformation to Chrysanthemum morifolium, Zhiwu Xuebao. Acta Bot. Sin., 1999, 41(3), 268–271.
  • Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S. and Sumitomo, K., Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol., 2006, 142, 1193–1201.
  • Ohmiya, A., Sumitomo, K. and Aida, R., ‘Yellow Jimba’: Suppression of carotenoid cleavage dioxygenase (CmCCD4a) expression turns white chrysanthemum petals yellow. J. Jpn. Soc. Hortic. Sci., 2009, 78, 450–455.
  • Brugliera, F. et al., Violet/blue chrysanthemums – metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol., 2013, 54(10), 1696–1710; doi:10.1093/pcp/pct110.
  • Noda, N. et al., Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins. Plant Cell Physiol., 2013, 54, 1684–1695.
  • Huang, H., Hu, K., Han, K-T., Xiang, Q-Y. and Dai, S-L., Flower colour modification of chrysanthemum by suppression of F3H and overexpression of the exogenous Senecio cruentus F35H gene. PLoS ONE, 2013, 8(11), e74395.
  • Shinoyama, H., Saito, M., Nomura, Y., Sano, T., Ezura, H., Kamada, H. and Aida, R., Induction of male sterility in transgenic chrysanthemums (Chrysanthemum morifolium Ramat.) by expression of a mutated ethylene receptor gene, Cm-ETR1/H69A, and the stability of this sterility at varying growth temperatures. Mol. Breed., 2012, 29, 285–295.
  • Graves, A. C. F. and Goldman, S. L., Agrobacterium tumefaciens mediated transformation of the monocot genus Gladiolus: Detection of expression of T-DNA encoded genes. J. Bacetriol., 1987, 169, 1745–1746.
  • Kamo, K., Blowers, A., Smith, F., Van Eck, J. and Lawson, R., Stable transformation of Gladiolus using suspension cells and callus. J. Am. Soc. Hortic. Sci., 1995, 120, 347–352.
  • Kamo, K., Blowers, A., Smith, F. and Van Eck, J., Stable transformation of Gladiolus by particle gun bombardment of cormels. Plant Sci., 1995, 110, 105–111.
  • Kamo, K., Joung, Y. H. and Green, K., GUS expression in gladiolus plants controlled by two gladiolus ubiquitin promoters. Floricult. Ornamental Biotechnol., 2009, 3, 10–14.
  • Kamo, K. and Blowers, A., Tissue specificity and expression level of gusA under rolD, mannopine synthase and translation elongation factor 1 subunit-a promoters in transgenic Gladiolus plants. Plant Cell Rep., 1999, 18, 809–815.
  • Kamo, K., Blowers, A. and McElroy, D., Effect of the Cauliflower mosaic virus 35S, actin, and ubiquitin promoters on uidA expression from a bar–uidA fusion gene in transgenic Gladiolus plants. In Vitro Cell. Dev. Biol.–Plant, 2000, 36, 13–20.
  • Kamo, K. K., Long-term expression of the uidA gene in Gladiolus plants under control of either the ubiquitin, rolD, mannopine synthase, or cauliflower mosaic virus promoters following three seasons of dormancy. Plant Cell Rep., 2003, 21, 797–803.
  • Kamo, K., Transgene expression for Gladiolus plants grown outdoors and in greenhouse. Sci. Hortic., 2008, 117, 275–280.
  • Kamo, K., Gera, A., Cohen, J., Hammond, J., Blowers, A. and Smith, F., Transgenic Gladiolus plants transformed with the Bean yellow mosaic virus coat-protein gene in either sense or antisense orientation. Plant Cell Rep., 2005, 23, 654–663.
  • Kamo, K., Jordan, R., Guaragna, M. A., Hsu, H. T. and Ueng, P., Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase or coat protein subgroup II gene from Cucumber mosaic virus. Plant Cell Rep., 2010, 29, 695–704.
  • Kamo, K., Aebig, J., Guaragna, M. A., James, C., Hsu, H. T. and Jordan, R., Gladiolus plants transformed with single chain variable fragment antibodies to Cucumber mosaic virus. Plant Cell Tiss. Organ Cult., 2012, 110, 13–21.
  • Kamo, K. et al., Resistance to Fusarium oxysporum f. sp. gladioli in transgenic gladiolus plants expressing either a bacterial chloroperoxidase or fungal chitinase genes. Plant Cell Tiss. Organ Cult., 2015; doi:10.1007/s11240-015-0913-1.
  • Ainsley, P. J., Collins, G. G. and Sedgley, M., Factors affecting Agrobacterium-mediated gene transfer and the selection of transgenic calli in paper shell almond (Prunus dulcis Mill.). J. Hortic. Sci. Biotechnol., 2001, 76, 522–528.
  • Tanaka, Y., Katsumoto, Y., Brugliera, F. and Mason, J., Genetic engineering in floriculture. Plant Cell Tiss. Organ Cult., 2005, 80, 1–24.
  • Lu, C. Y., Nugent, G., Wardley-Richardson, T., Chandler, S. F., Young, R. and Dalling, M. J., Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.). Biotechnology, 1991, 9, 864–868.
  • Shiba, T. and Mii, M., Agrobacterium tumefaciens mediated transformation of .highly regenerable cell suspension of cultures in Dianthus acicularis, J. Hortic. Sci. Biotechnol., 2005, 80, 393.
  • Meng, L. S., Song, J. P., Sun, S. B. and Chong-Ying Wang, C. Y., The ectopic expression of PttKN1 gene causes pleiotropic alternation of morphology in transgenic carnation (Dianthus caryophyllus L.). Acta Physiol. Plant, 2009, 31, 1155–1164.
  • Ovadis, M. et al., Generation of transgenic carnation plants with novel characteristics by combining microprojectile bombardment with Agrobacterium tumefaciens transformation. In Plant Biotechnology and In Vitro Biology in the 21st Century (eds Altman, A., Izhar, S. and Ziv, M.), Kluwer Academic Publishers, Dordrecht, the Netherlands, 1999, pp. 189–192.
  • Zuker, A. et al., Genetic engineering of agronomic and ornamental traits in carnation. Acta Hortic., 2001, 560, 91–94.
  • Casanova, E., Zuker, A., Trillas, M. I., Moysset, L. and Vainstein, A., The rolC gene in carnation exhibits cytokinin- and auxin-like activities. Sci. Hortic., 2003, 97, 321–331.
  • Holton, T. A. et al., Cloning and expression of cytochrome P450 genes controlling flower colour. Nature, 1993, 366, 276–279.
  • Zuker, A. et al., Modification of flower colour and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol. Breed., 2002, 9, 33–41.
  • Zuker, A., Tzfira, T. and Vainstein, A., Genetic engineering for cut-flower improvement. Biotechnol. Adv., 1998, 16, 33–79.
  • Lavy, M., Amir, Z. A., Lewinsohn, E., Larkov, O., Ravid, U., Vainstein, A. and Weiss, D., Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol. Breed., 2002, 9, 103–111.
  • Kanwar, J. K. and Kumar, S., Recovery of transgenic plants by Agrobacterium-mediated genetic transformation in Dianthus caryophyllus L. (carnation). Adv. Appl. Sci. Res., 2011, 2, 357–366.
  • Shibuya, K., Yoshioka, T., Hashiba, T. and Satoh, S., Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers. J. Exp. Bot., 2000, 51, 2067–2073.
  • Nukui, H., Kudo, S., Yamashita, A. and Satoh, S., Repressed ethylene production in the gynoecium of long-lasting flowers of the carnation ‘White Candle’: role of the gynoecium in carnation flower senescence. J. Exp. Bot., 2004, 55, 641–650.
  • Satoh, S. and Waki. K., Repressed expression of DC-ACS1 gene in a transgenic carnation supports the role of its expression in the gynoecium for the onset of ethylene production in senescing flower. J. Jpn. Soc. Hortic. Sci., 2006, 75, 173–177.
  • Iwazaki, Y., Kosugi, Y. Waki, K., Yoshioka, T. and Satoh, S., Generation and ethylene production of transgenic carnations harboring ACC synthase cDNA in sense or antisense orientation. J. Appl. Hortic., 2004, 6(2), 67–71.
  • Savin, K. W. et al., Antisense ACC oxidase RNA delays carnation petal senescence HortScience, 1995, 30, 970–972.
  • Kosugi, Y. et al., Expression of genes responsible for ethylene production and wilting are differently regulated in carnation (Dianthus caryophyllus L.) petals. Plant Sci., 2000, 158, 139–145.
  • Bovy, A. G., Agenent, G. C., Dons, H. J. M. and Van, A. C., Heterologous expression of the Arabidopsis etrl-1 allele inhibits the senescence of carnation flowers. Mol. Breed., 1999, 4, 301–308.
  • Kinouchi, T., Endo, R., Yamashita, A. and Satoh, S., Transformation of carnation with genes related to ethylene production and perception: towards generation of potted carnations with a longer display time. Plant Cell Tiss. Organ Cult., 2006, 86, 27–35.
  • Inokuma, T., Kinouchi, T. and Satoh, S., Reduced ethylene production in transgenic carnations transformed with ACC oxidase cDNA in sense orientation. J. Appl. Hortic., 2008, 10(1), 3–7.
  • Dobres, M. S., Prospects for commercialisation of transgenic ornamentals. In Transgenic Horticultural Crops; Challenges and Opportunities (eds Mou, B. and Scorza, R.), CRC Press, Boca Raton, FL, USA, 2001, pp. 305–316.

Abstract Views: 287

PDF Views: 75




  • Transgenics in Ornamental Crops:Creating Novelties in Economically Important Cut Flowers

Abstract Views: 287  |  PDF Views: 75

Authors

Rishu Sharma
Department of Horticulture, G.B. Pant University of Agriculture and Technology, Pantnagar 263 145, India
Yalek Messar
Department of Horticulture, G.B. Pant University of Agriculture and Technology, Pantnagar 263 145, India

Abstract


Development of transgenics is the need of the modern era of plant breeding, as they possess the potential to incorporate those characters in crop varieties which are either difficult or impossible through conventional breeding approaches. In case of ornamental crops, the progress made in transgenic breeding is not that impressive like in cereals, pulses and vegetables, but the initiatives taken and advancements made have implicated the bright future of this technology in ornamental crops. Improved morphology, flower colour, resistance and fragrance are some of the desired novel traits in ornamental crops where transgenic approaches need to intervene. Transgenic breeding in major cut-flower crops like rose, chrysanthemum, gladiolus and carnation has provided avenues for incorporation of novel traits in other ornamental crops as well and has made such crops an ideal target for application of other advanced technologies.

Keywords


Cut Flowers, Ornamental Crops, Novel Traits, Transgenics.

References





DOI: https://doi.org/10.18520/cs%2Fv113%2Fi01%2F43-52