Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Predictive QSAR models for the toxicity of Phenols


Affiliations
1 Materials and Environment Analytical Sciences Laboratory, Larbi Ben M'hidi University - Oum El Bouaghi B.P. 358 route de Constantine, 04000 Oum el Bouaghi, Algeria ., India
     

   Subscribe/Renew Journal


Toxicity data for the 50% growth inhibitory concentration against Tetrahymena pyriformis pCIC50 = -logCIC50 for 85 phenols substituted were obtained experimentally. Log (CIC50)-1 along with the hydrophobicity, the logarithm of the 1-octanol/water partition coefficient (log Kow), and R2u (GETAWAY descriptors). The entire data set was randomly split into a training set (60chemicals) used to establish the QSAR model, and a test set (25 chemicals) for statistical external validation The descriptors models were selected from an extensive set of several descriptors (topological, geometrical and quantum). Quantitative structure-activity/property (QSAR / The values of the statistical parameters obtained from the multiple linear regression analysis (R²=95.5%, Q²=95.01%, S=0.157, F=604.34, P=0, SDEC=0.153, SDEP=0.161, Q²ext=95.96%, SDEPext=0.153) testify to the good fit of the model.

Keywords

Getaway descriptors, QSAR, hydrophobicity, external validation, Toxicity topological
Subscription Login to verify subscription
User
Notifications
Font Size


  • J. Michałowicz, W. Duda, Phenols--Sources and Toxicity, Polish Journal of Environmental Studies, 2007.16.
  • K.E. Hevener, D.M. Ball, J.K. Buolamwini, R.E. Lee, Quantitative structure–activity relationship studies on nitrofuranyl anti-tubercular agents, Bioorganic & medicinal chemistry,16;2008:8042-8053.
  • Parimal M. Prajapati, Yatri R. Shah, DhruboJyoti Sen. Artificial Neural Network: A New Approach for QSAR Study. Research J. Science and Tech. 3(1); 2011: 17-24
  • Sudhanshu Dhar Dwivedi, Arpan Bharadwaj, Amit Shrivastava. Application of Topological Descriptor: QSAR Study of Chalcone Derivatives. Asian J. Research Chem. 3(4); 2010:1030-1034.
  • Satyajit Dutta, Sagar Banik, Sovan Sutradhar, Sangya Dubey, Ira Sharma. 4D-QSAR: New Perspectives in Drug Design. Asian J. Research Chem. 4(6; 2011: 857-862.
  • Lokendra Kumar Ojha, Ajay M Chaturvedi, Arpan Bhardwaj, Abhilash Thakur, Mamta Thakur. Physiochemical Investigation and Role of Indicator Parameter in the Modeling of Tetrahydroimidazole Benzodiazepine -1- one (TIBO): A QSAR Study. Asian J. Research Chem. 5(3; 2012:377-382.
  • Sapkale GN, Khandare DD, Patil SM, Ulhas S Surwase. Drug Design: An Emerging Era of Modern Pharmaceutical Medicines. Asian J. Research Chem. 3(2; 2010: 261-264.
  • R. Todeschini, V. Consonni, M. Pavan, DRAGON Software for the Calculation of Molecular Descriptors, Release 5.4 for Windows, Milano, 2006.
  • Hyperchem™ Release 7, Hypercube for Windows, Molecular Modeling System, 2000.
  • K. Pirgelovfi 1, S. Balfi~ 1, T. W. Schultz 2 Model-Based QSAR for Ionizable Compounds: Toxicity of Phenols Against Tetrahymenapyriformis Arch. Environ. Contam. Toxicol. 30 ;1996 : 170-177 .
  • R. Leardi, R. Boggia et M. Terrile. Genetic Algorithms as a Strategy for Feature Selection, Journal of Chemometrics, 6;1992: 267 – 281.
  • R. Todeschini, D. Ballabio, V. Consonni, A. Mauri, M. Pavan, MOBYDIGS, version 1.1, Copyright TALETE srl.2009.
  • M. Pavan, A. Mauri et R. Todeschini. Total Ranking Models by the Genetic Algorithm Variable Subset Selection (GA–VSS) Approach for Environmental Priority Settings, Analytical and Bioanalytical Chemistry, 380; 2004: 430 – 444.
  • Mark T.D. Cronin, T. Schultz W. Structure-toxicity relationships for Phenols to Tetrahymena Pyriformis, Chemosphere.32; 1996:14531468.
  • Enkatesh Kamath, Aravinda Pai. Application of Molecular Descriptors in Modern Computational Drug Design –An Overview. Research J. Pharm. and Tech.10(9) 2017.: 3237-3241. doi: 10.5958/0974360X.2017.00574.1
  • V. Consonni, R. Todeschini, M. Pavan, Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors, 1— Theory of the novel 3D molecular descriptors, Journal of Chemical Information and Modeling .42;2002:682-692.
  • Prarthana V Rewatkar, Ganesh R Kokil. QSAR Studies of Novel 1and 8-Substituted-3-Furfuryl Xanthines: An Adenosine Receptor Antagonist. Asian J. Research Chem. 3(2): April- June 2010. 416-420.
  • Chatterje, S. and Hadi, A.S. Regression Analysis by Example. 4th Edition, John Wiley & Son, Inc., Hoboken,. 2006. p366
  • Sameer Dixit, Arun K. Sikarwar. Statistical Approach to Modelling of Activity of Phenol’s and its Derivatives against L1210 Leukaemia cells. Asian J. Research Chem. 13(3); 2020: 237-240. doi: 10.5958/0974-4150.2020.00046.2
  • Besse, P Pratique de la modélisation statistique; Publication du laboratoire de statistique et Probabilité .2003
  • Bando, P., et al. Single-Component Donor-Acceptor Organic Semiconductors Derived from TCNQ. The Journal of Organic Chemistry,59;1994: 4618-4629.
  • Siegel, A.F. Practical Business Statistics. IRWIN, 1997.3rd Edition.
  • Kiran Madhawai, Dinesh Rishipathak, Santosh Chhajed, Sanjay Kshirsagar. Predicting the Anti-Inflammatory Activity of Novel 5Phenylsulfamoyl-2-(2-Nitroxy) (Acetoxy) Benzoic acid derivatives using 2D and 3D-QSAR (kNN-MFA) Analysis. Asian J. Res. Pharm. Sci.7(4); 2017: 227-234. doi: 10.5958/2231-5659.2017.00036.4
  • T. Hastie, R. Tibshirani and J. Friedman, “The Elements of Statistical Learning: Data Mining, Inference, and Prediction,” 2nd Edition, Springer, New York, 2009.
  • Golbraikh, A. and Tropsha, A. Beware of q2! Journal of Molecular Graphics and Modelling.20;2002: 269- 276.https://doi.org/10.1016/S1093-3263(01)00123-1
  • Roy K., Kar S., Das R. A Primer on QSAR/QSPR Modeling. Springer International Publishing;. Statistical methods in QSAR/QSPR. 2015: 37–59.
  • Consonni, V., Ballabio, D. and Todeschini, R. Evaluation of Model Predictive Ability by External Validation Techniques. Journal of Chemometrics,24; 2010: 94-201. https://doi.org/10.1002/cem.1290.
  • R. S. Kalkotwar, R. B. Saudagar. Design, Synthesis and antimicrobial, anti-inflammatory, Antitubercular activities of some 2,4,5- trisubstituted imidazole derivatives. Asian J. Pharm. Res. 3(4); 2013:
  • -165.
  • L. Eriksson, J. Jaworska, A. Worth, M. Cronin, R.M. Mc Dowell, P. Gramatica, Methods for reliability, uncertainty assessment, and applicability evaluations of regression based and classification QSARs,
  • Environmental Health Perspectives.111;2003:1361-1375.
  • A. Tropsha, P. Gramatica, V.K. Grombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR and Combinatorial Science.
  • ; 2003: 69-76.

Abstract Views: 309

PDF Views: 0




  • Predictive QSAR models for the toxicity of Phenols

Abstract Views: 309  |  PDF Views: 0

Authors

Auteur Hamada Hakim
Materials and Environment Analytical Sciences Laboratory, Larbi Ben M'hidi University - Oum El Bouaghi B.P. 358 route de Constantine, 04000 Oum el Bouaghi, Algeria ., India

Abstract


Toxicity data for the 50% growth inhibitory concentration against Tetrahymena pyriformis pCIC50 = -logCIC50 for 85 phenols substituted were obtained experimentally. Log (CIC50)-1 along with the hydrophobicity, the logarithm of the 1-octanol/water partition coefficient (log Kow), and R2u (GETAWAY descriptors). The entire data set was randomly split into a training set (60chemicals) used to establish the QSAR model, and a test set (25 chemicals) for statistical external validation The descriptors models were selected from an extensive set of several descriptors (topological, geometrical and quantum). Quantitative structure-activity/property (QSAR / The values of the statistical parameters obtained from the multiple linear regression analysis (R²=95.5%, Q²=95.01%, S=0.157, F=604.34, P=0, SDEC=0.153, SDEP=0.161, Q²ext=95.96%, SDEPext=0.153) testify to the good fit of the model.

Keywords


Getaway descriptors, QSAR, hydrophobicity, external validation, Toxicity topological

References