Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

A Compendious Review on Biodegradable Polymeric Nanoparticles


Affiliations
1 Yashoda Shikshan Prasarak Mandal, Yashoda Technical Campus, Faculty of Pharmacy, Wadhe NH4, Satara. 415011, Maharashtra, India
     

   Subscribe/Renew Journal


Polymeric nanoparticles (NPs) are among the eminently designed organic nanomedicine. There is a lot of elation about polymeric NPs' potential to revolutionize modern medicine. Particle size, morphology, material selection, and processing methods are all being studied to synthesize the perfect nanosystem for effectual and precisely target bioactive. PNPs have the ability to significantly elevate the potency of therapeutic medication by allowing for targeted distribution to a specific location. Drug delivery techniques such as conjugation and trapping of medicines, prodrugs, stimuli-responsive systems, imaging modalities, and theranostics all use polymeric NPs. The review focuses on the array of existing approaches for the producing of polymeric nanoparticles. We want to draw attention to several natural and synthetic biodegradable polymers. Polymers' physiochemical properties can be tweaked to provide distribution through several biological barriers in order to reach distinct organs or cells. The use of biodegradable polymers as nanocarriers is particularly appealing since these materials can be tailored to degrade in physiological system. Additionally, in the next part, the characterization methods for this type of nanoparticles are discussed.

Keywords

Targeted Delivery, Controlled Manner, Biodegradable Polymer, Nanocarrier, Polymeric Nanoparticles
Subscription Login to verify subscription
User
Notifications
Font Size


  • M.L. Hans, A.M. Lowman, Biodegradable nanoparticles for drug delivery and targeting, Curr. Opin. Solid State Mater. Sci. 6:2002:319–327.
  • Des Rieux A, Fievez V, Garinot M, Schneider Y. J. Preat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 2006;116:1–27.
  • J.P. Rao, K.E. Geckeler, Polymer nanoparticles: preparation techniques and size-control parameters, Prog. Polym. Sci. 36 (7) :2011;887–913.
  • Serena Bertoni, Nadia Passerini, Beatrice Albertini; Nanotechnology for Oral Drug Delivery:2020 pp. 24.
  • C. Vauthier, P. Couvreur, Development of nanoparticles made of polysaccharides as novel drug carrier systems, in: D.L. Wise (Ed.), Handbook of Pharmaceutical Controlled Release Technology, Marcel Dekker, New York, 2000, pp. 13–429.
  • Karine Cappuccio de Castro, Josiel Martins Costa, and Maria Gabriela Nogueira Campos; Drug-loaded polymeric nanoparticles: a review; International journal of polymeric material and polymeric biomaterial; Brazil,2020,pp.1-13.
  • Kalhapure RS, Renukuntla J. Thermo- and pH dual responsive polymeric micelles and nanoparticles. Chem Biol Interact 2018;295:20–37.
  • Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Eng 2009;48:5418–29.
  • P. Kesharwani, L. Xie, S. Banerjee, G. Mao, S. Padhye, F.H. Sarkar, A.K. Iyer, Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3, 4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells, Colloids Surf. B Biointerfaces 136:2015;413–423.
  • Wiwattanapatapee R, Carren˜o-Go´mez B, Malik N, Duncan R. Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res 2000;17:991–8.
  • S. Tripathy, M. Das, Dendrimers and their applications as novel drug delivery carriers, J. Appl. Pharm. Sci. 3 (2013) 142–149.
  • Ekladious I, Colson YL, Grinstaff MW. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov 2019;18:273–94.
  • Pasut G, Veronese F. Polymeredrug conjugation, recent achievements and general strategies. Prog Polym Sci 2007;32(8):933-61
  • Johan Karlsson, Hannah J. Vaughan and Jordan J. Green; Annual Review of Chemical and Biomolecular Engineering:2018; 10:49
  • Kean, T.; Roth, S.; Thanou, M. Trimethylated chitosans as nonviral gene delivery vectors: cytotoxicity and transfection efficiency. J. Controlled Release 2005, 103, 643−653.
  • Kean T, Thanou M. 2010. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 62:3–11.
  • Banerjee A, Bandopadhyay R. 2016. Use of dextran nanoparticle: a paradigm shift in bacterial exopolysaccharide based biomedical applications. Int. J. Biol. Macromol. 87:295–301.
  • Santoro M, Tatara AM, Mikos AG. 2014. Gelatin carriers for drug and cell delivery in tissue engineering. J. Control. Release 0:210–18.
  • Jain D, Bar-Shalom D. 2014. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev. Ind. Pharm. 40:1576–84.
  • Jana S, Sen KK, Gandhi A. 2016. Alginate based nanocarriers for drug delivery applications. Curr. Pharm. Des. 22:3399–410.
  • Yamagata M, Kawano T, Shiba K, Mori T, Katayama Y, Niidome T. 2007. Structural advantage of dendritic poly(L-lysine) for gene delivery into cells. Bioorg. Med. Chem. 15:526–32.
  • Betala S., Varma M., Abbulu K.: Formulation and evaluation of polymeric nanoparticle of an antihypertensive drug for gastroretention, Journal of Drug Delivery and Theurapeutics.2018:8(6):82-86.
  • Kishore B Chalasani, Gregory J Russell-Jones, Akhlesh K Jain, Prakash V Diwan, Sanjay K Jain: Effective oral delivery of insulin in animal models using vitamin B12 coated dextran nanoparticles; Journal of controlled release 2007;122 (2), 141-150.
  • Das PR, Nanda RM, Behara A, Nayak PR (20Gelatin blended with nanoparticle cloisite30B (MMT) for control drug delivery of anticancer drug paclitaxel. International research journal of biochemistry and bioinformatics, 2011; 1: 35-42.
  • Archana P. Bagre, Keerti Jain, Narendra K. Jain: Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment, International journal of pharmaceutics 2013: 456 (1), 31-40.
  • Peihao Yin, Yan Wang, Yan Yan Qiu, LiLi Hou, Xuan Liu, Jianmin Oin et al.: Bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles: preparation, cellular uptake, tissue distribution, and anticancer activity, International journal of nanomedicine, 2012;7;3961.
  • Nazila Kamaly, Basit Yameen, Jun Wu, and Omid C. Farokhzad; Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release; Frontiers in Macromolecular and Supramolecular Science, ACS publication: 2016, 116, 4, 2602–2663.
  • Astete, C. E.; Sabliov, C. M. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci., Polym. Ed. 2006, 17, 247−289.
  • Ulery, B. D.; Nair, L. S.; Laurencin, C. T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 832−864.
  • Dash, T. K.; Konkimalla, V. B. Polymeric modification and its implication in drug delivery: poly-epsilon-caprolactone (PCL) as a model polymer. Mol. Pharmaceutics 2012, 9, 2365−2379.
  • Graf, A.; McDowell, A.; Rades, T. Poly(alkylcyanoacrylate) nanoparticles for enhanced delivery of therapeutics - is there real potential? Expert Opin. Drug Delivery 2009, 6, 371−387.
  • Nicolas, J.; Couvreur, P. Synthesis of poly(alkyl cyanoacrylate)- based colloidal nanomedicines. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2009, 1, 111−127.
  • Park, E. S.; Maniar, M.; Shah, J. C. Biodegradable polyanhydride devices of cefazolin sodium, bupivacaine, and taxol for local drug delivery: preparation, and kinetics and mechanism of in vitro release. J. Controlled Release 1998, 52, 179−189.
  • Heller, J.; Barr, J. Poly(ortho esters)From concept to reality. Biomacromolecules 2004, 5, 1625−1632.
  • Roskos, K.; Fritzinger, B.; Rao, S.; Armitage, G.; Heller, J. Development of a drug delivery system for the treatment of periodontal disease based on bioerodible poly (ortho esters). Biomaterials 1995, 16, 313.
  • Qi, M.; Li, X.; Yang, Y.; Zhou, S. Electrospun fibers of acid-labile biodegradable polymers containing ortho ester groups for controlled release of paracetamol. Eur. J. Pharm. Biopharm. 2008, 70, 445−452.
  • Marck, K. W.; Wildevuur, C. H.; Sederel, W. L.; Bantjes, A.; Feijen, J. Biodegradability and tissue reaction of random copolymers of L-leucine, L-aspartic acid, and L-aspartic acid esters. J. Biomed. Mater. Res. 1977, 11, 405−422.
  • Guo, K.; Chu, C. C.; Chkhaidze, E.; Katsarava, R. Synthesis and characterization of novel biodegradable unsaturated poly(ester amide)s. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 1463−1477.
  • Diaz, A.; Katsarava, R.; Puiggali, J. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int. J. Mol. Sci. 2014, 15, 7064−7123.
  • Zhao, Z.; Wang, J.; Mao, H. Q.; Leong, K. W. Polyphosphoesters in drug and gene delivery. Adv. Drug Delivery Rev. 2003, 55, 483−499.
  • Wang, Y. C.; Tang, L. Y.; Sun, T. M.; Li, C. H.; Xiong, M. H.; Wang, J. Self-assembled micelles of biodegradable triblock copolymers based on poly(ethyl ethylene phosphate) and poly(-caprolactone) as drug carriers. Biomacromolecules 2008, 9, 388−395.
  • Emrah O., Meltem C., Orhan A., Ahmet H.: Nifedipine-loaded polymeric nanoparticles: Preparation and in vitro characterization, Pak. J. Pharm. Sci 2019; 32(2):547-554.
  • Verger M, Fluckiger L, Young-Il Kim, Hoffman M., Maincent P.: Preparation and characterization of nanoparticles containing an antihypertensive agent, European Journal of Pharmaceutics and Biopharmaceutics 1998; 46:137-143.
  • Georgi Yordanov, Ralica Skrobanska, Alexander Evangelatov; Colloidal formulation of Etoposide based o poly(butyl cyanoacrylate) nanoparticles: preparation, physiochemical properties and cytotoxicity; Colloids and Surfaces B: Biointerfaces 2013:101:215-222.
  • Mallika Palamoor, Monica M Jablonski: Synthesis, characterization and in vitro studies of Celecoxib-loaded poly(orthoester) nanoparticles targeted for intraocular drug delivey; Colloids Surf B Biointerfaces,2013;112:474-82.
  • Maite Agueros, Socorro Espuelas, Irene Esparza, Patricia Calleja, Ivan Penuelas, Gilles Ponchel et. al; Cyclodextrin-poly(anhydride) nanoparticle as new vehicles for oral drug delivery 2011:8(6):721-734.
  • Qiuxia Ding, Ting Niu, Yi Yang, Qingfa Guo, Feng Luo, Zhiyong Qian; Preparation of Curcumin-Loaded Poly(ester amine) Nanoparticles for the treatment of Anti- Angiogenesis 2014:10:632-641.
  • Evandro M. Alexandrino, Sandra Ritz, Filippo Marsico, Grit Baier, Volker Mailander, Katharina Landfester, Frederik R. Wurm : Paclitaxel-loaded polyphosphate nanoparticle: a potential strategy for bone cancer treatment; Journal of Material Chemistry B 2014,2,1298-1308.
  • Jawahar, N.; Meyyanathan, S. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int. J. Health Allied Sci. 2012, 1, 217.
  • Jose, S.; Sowmya, S.; Cinu, T.A.; Aleykutty, N.A.; Thomas, S.; Souto, E.B. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A. Eur. J. Pharm. Sci. 2014, 63, 29–35.
  • Bohrey, S.; Chourasiya, V.; Pandey, A. Polymeric nanoparticles containing diazepam: Preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016, 3, 1–7.
  • Szcz ˛ech, M.; Szczepanowicz, K. Polymeric Core-Shell Nanoparticles Prepared by Spontaneous Emulsification Solvent Evaporation and Functionalized by the Layer-by-Layer Method. Nanomaterials 2020, 10, 496.
  • Wang, Y.; Li, P.; Truong-Dinh Tran, T.; Zhang, J.; Kong, L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 2016, 6, 26
  • Aleksandra Zieli ´nska , Filipa Carreiró , Ana M. Oliveira , Andreia Neves , Bárbara Pires , D. Nagasamy Venkatesh et al., Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology; Molecules 2020,15;25(16):3731.
  • Kumar, S.; Dilbaghi, N.; Saharan, R.; Bhanjana, G. Nanotechnology as Emerging Tool for Enhancing Solubility of Poorly Water-Soluble Drugs. BioNanoScience 2012, 2, 227–250.
  • Quintanar-Guerrero, D.; Allemann, E.; Doelker, E.; Fessi, H. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm. Res. 1998, 15, 1056–1062.
  • Vauthier, C.; Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 2009, 26, 1025–1058.
  • Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 80, 771–784. .
  • Canadas, C.; Alvarado, H.; Calpena, A.C.; Silva, A.M.; Souto, E.B.; Garcia, M.L.; Abrego, G. In vitro, ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. Int. J. Pharm. 2016, 511, 719–727.
  • Salatin, S.; Barar, J.; Barzegar-Jalali, M.; Adibkia, K.; Kiafar, F.; Jelvehgari, M. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res. Pharm. Sci. 2017, 12, 1.
  • Chidambaram, M.; Krishnasamy, K. Modifications to the conventional nanoprecipitation technique: An approach to fabricate narrow sized polymeric nanoparticles. Adv. Pharm. Bull. 2014, 4, 205.
  • Bohrey, S.; Chourasiya, V.; Pandey, A. Polymeric nanoparticles containing diazepam: Preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016, 3, 1–7.
  • Mathurin, J.; Pancani, E.; Deniset-Besseau, A.; Kjoller, K.; Prater, C.B.; Gref, R.; Dazzi, A. How to unravel the chemical structure and component localization of individual drug-loaded polymeric nanoparticles by using tapping AFM-IR. Analyst 2018, 143, 5940–5949.
  • Stals, P.J.; Gillissen, M.A.; Paffen, T.F.; de Greef, T.F.; Lindner, P.; Meijer, E.; Palmans, A.R.; Voets, I.K. Folding polymers with pendant hydrogen bonding motifs in water: The effect of polymer length and concentration on the shape and size of single-chain polymeric nanoparticles. Macromolecules 2014, 47, 2947–2954.
  • Brar, S.K.; Verma, M. Measurement of nanoparticles by light-scattering techniques. Trac. Trends Anal. Chem. 2011, 30, 4–17.
  • Carvalho, P.M.; Felício, M.R.; Santos, N.C.; Gonçalves, S.; Domingues, M.M. Application of light scattering techniques to nanoparticle characterization and development. Front. Chem. 2018, 6, 237.
  • Simonet, B.M.; Valcarcel, M. Monitoring nanoparticles in the environment. Anal. Bioanal. Chem. 2009, 393, 17–21.
  • Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop. J. Pharm. Res. 2013, 12, 255–264.
  • González, A.E. Colloidal Aggregation Coupled with Sedimentation: A Comprehensive Overview. Adv. Colloid Sci. 2016, 211.
  • Ziaee, A.; Albadarin, A.B.; Padrela, L.; Femmer, T.; O’Reilly, E.; Walker, G. Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches. Eur. J. Pharm. Sci. 2019, 127, 300–318.
  • De Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133.
  • Wallace, S.J.; Li, J.; Nation, R.L.; Boyd, B.J. Drug release from nanomedicines: Selection of appropriate encapsulation and release methodology. Drug Deliv. Transl. Res. 2012, 2, 284–292.
  • Calvo, P.; Remunan-Lopez, C.; Vila-Jato, J.L.; Alonso, M. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 1997, 63, 125–132.
  • Shen, J.; Burgess, D.J. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: Recent developments and challenges. Drug Deliv. Transl. Res. 2013, 3, 409–415.
  • Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010, 7, 429–444.

Abstract Views: 88

PDF Views: 0




  • A Compendious Review on Biodegradable Polymeric Nanoparticles

Abstract Views: 88  |  PDF Views: 0

Authors

Shivani Deshmukh
Yashoda Shikshan Prasarak Mandal, Yashoda Technical Campus, Faculty of Pharmacy, Wadhe NH4, Satara. 415011, Maharashtra, India
Bharati Chaudhari
Yashoda Shikshan Prasarak Mandal, Yashoda Technical Campus, Faculty of Pharmacy, Wadhe NH4, Satara. 415011, Maharashtra, India
Atish Velhal
Yashoda Shikshan Prasarak Mandal, Yashoda Technical Campus, Faculty of Pharmacy, Wadhe NH4, Satara. 415011, Maharashtra, India
Vivekkumar Redasani
Yashoda Shikshan Prasarak Mandal, Yashoda Technical Campus, Faculty of Pharmacy, Wadhe NH4, Satara. 415011, Maharashtra, India

Abstract


Polymeric nanoparticles (NPs) are among the eminently designed organic nanomedicine. There is a lot of elation about polymeric NPs' potential to revolutionize modern medicine. Particle size, morphology, material selection, and processing methods are all being studied to synthesize the perfect nanosystem for effectual and precisely target bioactive. PNPs have the ability to significantly elevate the potency of therapeutic medication by allowing for targeted distribution to a specific location. Drug delivery techniques such as conjugation and trapping of medicines, prodrugs, stimuli-responsive systems, imaging modalities, and theranostics all use polymeric NPs. The review focuses on the array of existing approaches for the producing of polymeric nanoparticles. We want to draw attention to several natural and synthetic biodegradable polymers. Polymers' physiochemical properties can be tweaked to provide distribution through several biological barriers in order to reach distinct organs or cells. The use of biodegradable polymers as nanocarriers is particularly appealing since these materials can be tailored to degrade in physiological system. Additionally, in the next part, the characterization methods for this type of nanoparticles are discussed.

Keywords


Targeted Delivery, Controlled Manner, Biodegradable Polymer, Nanocarrier, Polymeric Nanoparticles

References