Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Enhancement of Dissolution Profile of Poorly Water Soluble Drug Using Water Soluble Carriers


Affiliations
1 Assistant Professor, Dr. Rajendra Gode Institute of Pharmacy, Amravati 444602, Maharashtra Principal, Dr. Rajendra Gode Institute of Pharmacy, Amravati 444602, Maharashtra, India
2 Assistant Professor, Government College of Pharmacy, Karad 415124, Maharashtra, India
     

   Subscribe/Renew Journal


Teneligliptin Hydrobromide is a long-acting, orally bioavailable, pyrolidone anti-diabetic activity with a solubility of 1.7mg/ml in water which also depends upon the pH and temperature of the solvent. So, Solid dispersion of drug with different polymers an attempt was made to improve dissolution of teneligliptin hydrobromide. The aim of this study was to prepare, characterize and compare solid dispersions of poorly water soluble anti diabetic drug by using PVP and HPMC for enhancing the dissolution rate of the drug. The solid dispersions were prepared by physical mixing method and kneading method at 1:1, 1:2 and 2:1 ratios of drug to polymer. The drug-excipient interaction study showed that the drug and polymers were compatible with each other. The formulations were evaluated for percent drug content, micromeritics and in-vitro dissolution studies. In the present study it was seen that there was an increase in in-vitro drug release for solid dispersion as compared to the pure drug taken alone. Based on the pattern of drug release, the kneading method showed more drug release as compared to physical mix method. In physical mix method, the rate of dissolution of teneligliptin hydrobromide was increased in teneligliptin and Polyvinylpyrrolidone (PVP) with the proportion of (1:2) when compared to the other formulations. In kneading method, the rate of dissolution of teneligliptin hydrobromide was increased in drug and Hydroxypropylmethylcellulose (HPMC) with the proportion of (1:2) when compared to the other formulations. Finally, solid dispersion containing HPMC, as a carrier, gave faster dissolution rates among all the formulations and was selected as the optimized formulation inthis study.


Keywords

Teneligliptin Hydrobromide, Antidiabetic, Dissolution enhancement, Solid Dispersion, HPMC, PVP
Subscription Login to verify subscription
User
Notifications
Font Size


  • Habib MJ. Historical background of solid dispersions. Pharmaceutical solid dispersion technology, Lancaster: Technomic. 2001; 1-6.
  • Patel CA, Patel PR, Sen JD, Patel JK. Enhancement of Solubility of Poorly Water Soluble Drug (Allopurinol) Through Solid Dispersion. Research J. Pharma. Dosage Forms and Tech. 2010; 2(2):156-163
  • Ahuja N, Katare OM and Singh B. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. European Journal of Pharmaceutics and Biopharmaceutics. 2007; 65(1): 26- 38.
  • Bhise SB and Rajkumar M. Effect of HPMC on solubility and dissolution of carbamazepine from III in simulated gastrointestinal fluids. Asian J Pharm. 2008; 38-42.
  • Vasconcelos TF, Sarmento B and Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discovery Today. 2007; 12(23-24): 1068-1075.
  • Laitinen R et al. Intra orally fast-dissolving particles of a poorly soluble drug: Preparation and invitro characterization. European Journal of Pharmaceutics and Biopharmaceutics. 2009; 71(2): 271- 281.
  • Vippagunta SR et al. Factors affecting the formation of eutectic solid dispersions and their dissolution behaviour. J. Pharm. Sci. 2006; 96: 294-304.
  • Patil, M., Jani, H., Khoja, S., Pirani, N., and Khoja, S. A Review on chemistry and pharmacological activity of metformin hydrochloride and teneligliptin hydrobromide hydrate in combined dosage form. Pharma Tutor. 2017; 5(3), 24-30.
  • Reddy KM., Rao NB., K. Reddy RK. Study on Effect of Excipients in Enhancing the Solubility of Nateglinide by Solid Dispersions. Asian J. Pharm. Tech. 2(1): Jan.-Mar. 2012; Page 04-07.
  • Chaulang G, Patil K, Ghodke D, Khan S, Yeole P. Preparation and characterization of solid dispersion tablet of furosemide with crospovidone. Research journal of pharmacy and technology. 2008;1(4):386-9.
  • Bhalerao AV, Deshkar SS, Shirolkar SV, Gharge VG, Deshpande AD. Development and evaluation of clonazepam fast disintigrating tablets using superdisintigrates and solid dispersion technique. Research Journal of Pharmacy and Technology. 2009;2(2):375-7.
  • Pradeep NS. A Review: Increasing Solubility of Poorly Soluble Drugs, by Solid Dispersion Technique. Research Journal of Pharmacy and Technology. 2011;4(12):1933-40.
  • Sharma D, Soni M, Kumar S, Gupta GD. Solubility enhancement– eminent role in poorly soluble drugs. Research Journal of Pharmacy and Technology. 2009;2(2):220-4.
  • Yadav AV, Yadav VB. Improvement of Physicochemical properties of Mesalamine with Hydrophilic Carriers by Solid Dispersion (kneading) method. Research Journal of Pharmacy and Technology. 2008;1(4):422-5.
  • Rao TV, Vidyadhara S, Sambasivarao KR. Formulation and In- Vitro evaluation of Aceclofenac Controlled release tablets by wet granulation method and solid dispersion technique. Research Journal of Pharmacy and Technology. 2012;5(4):505-12.
  • Bhise S, Chaulang G, Patel P , Bhosale A, Hardikar S. Superdisintegrants as solubilizing agent. Research Journal of Pharmacy and Technology. 2009;2(2):387-91.
  • Eswaraiah MC, Jaya S. Enhancement of Dissolution Rate of Telmisartan by Solid Dispersion Technique. Research Journal of Pharmacy and Technology. 2020;13(5):2217-20.
  • Mahore JG, Deshkar SS, Kumare PP. Solid Dispersion Technique for Solubility Improvement of Ketoconazole for Vaginal Delivery. Research Journal of Pharmacy and Technology. 2019;12(4):1649-54.
  • Modi A, Tayade P. Enhancement of dissolution profile by solid dispersion (kneading) technique. AAPS pharmscitech. 2006 Sep 1;7(3):E87.
  • Malviya V, Ladhake V, Gajbiye K, Satao J, Tawar M. Design and Characterization of Phase Transition System of Zolmitriptan Hydrochloride for Nasal Drug Delivery System. International Journal of Pharmaceutical Sciences and Nanotechnology. 2020 May 31;13(3):4942-51.
  • Malviya V, Thakur Y, Gudadhe SS, Tawar M. Formulation and evaluation of natural gum based fast dissolving tablet of Meclizine hydrochloride by using 3 factorial design 2. Asian Journal of Pharmacy and Pharmacology. 2020;6(2):94-100.
  • Jung JY, Yoo SD, Lee SH, Kim KH, Yoon DS, Lee KH. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. International journal of pharmaceutics. 1999 Oct 5;187(2):209-18.
  • Shin SC, Kim J. Physicochemical characterization of solid dispersion of furosemide with TPGS. International journal of pharmaceutics. 2003 ;251(1-2):79-84.
  • Nakkala B, Kishore SV, Gouda KH. Formulation and Evaluation of Simvastatin Solid Dispersions for Dissolution Rate Enhancement. Research J. Pharma. Dosage Forms and Tech. 2011; 3(4): 152-156.
  • Jayarao RY, Deborah D, Ambedkar T, Manohar BS. Formulation and Evaluation of Fast Dissolving Oral Films of Perindopril. Res. J. Pharm. Dosage Form. and Tech. 6(2): 2014; 71-80
  • Mewada A, Shah S, Tyagi CK. Enhancement of Solubility and Dissolution rate of Pravastatin using solid Dispersion. Research Journal of Pharmaceutical Dosage Forms and Technology. 2021; 13(2):89-4.
  • Sankar RK, Prasanthi NL, Manikiran SS, Rao RN. Effect of Solid Dispersion Technique on Improving the Solubility of Roxithromycin. Research J. Pharma. Dosage Forms and Tech. 2010; 2(2):184-188.
  • B. Divya, Sabitha P ., Reddy R., Reddy KM, Rao NB. An Approach to Enhance Solubility of Gatifloxacin by Solid Dispersion Technique. Asian J. Res. Pharm. Sci. 2(2): 2012; 58-61.
  • Tiwari G., Tiwari R., Srivastava B., Rai AK. Development and optimization of multi-unit solid dispersion systems of poorly water soluble drug. Research J. Pharm. and Tech. 1(4): 2008; 444-449
  • Jain S., Pillai S., Mandloi RS., Namdev N., Birla N. Formulation and Evaluation of Fast Dissolving film of Labetalol Hydrochloride. Res. J. Pharmacognosy and Phytochem. 2021; 13(1):1-4.

Abstract Views: 68

PDF Views: 0




  • Enhancement of Dissolution Profile of Poorly Water Soluble Drug Using Water Soluble Carriers

Abstract Views: 68  |  PDF Views: 0

Authors

Snehal S Manekar
Assistant Professor, Dr. Rajendra Gode Institute of Pharmacy, Amravati 444602, Maharashtra Principal, Dr. Rajendra Gode Institute of Pharmacy, Amravati 444602, Maharashtra, India
Ravindra L. Bakal
Assistant Professor, Dr. Rajendra Gode Institute of Pharmacy, Amravati 444602, Maharashtra Principal, Dr. Rajendra Gode Institute of Pharmacy, Amravati 444602, Maharashtra, India
Manoj S. Charde
Assistant Professor, Government College of Pharmacy, Karad 415124, Maharashtra, India

Abstract


Teneligliptin Hydrobromide is a long-acting, orally bioavailable, pyrolidone anti-diabetic activity with a solubility of 1.7mg/ml in water which also depends upon the pH and temperature of the solvent. So, Solid dispersion of drug with different polymers an attempt was made to improve dissolution of teneligliptin hydrobromide. The aim of this study was to prepare, characterize and compare solid dispersions of poorly water soluble anti diabetic drug by using PVP and HPMC for enhancing the dissolution rate of the drug. The solid dispersions were prepared by physical mixing method and kneading method at 1:1, 1:2 and 2:1 ratios of drug to polymer. The drug-excipient interaction study showed that the drug and polymers were compatible with each other. The formulations were evaluated for percent drug content, micromeritics and in-vitro dissolution studies. In the present study it was seen that there was an increase in in-vitro drug release for solid dispersion as compared to the pure drug taken alone. Based on the pattern of drug release, the kneading method showed more drug release as compared to physical mix method. In physical mix method, the rate of dissolution of teneligliptin hydrobromide was increased in teneligliptin and Polyvinylpyrrolidone (PVP) with the proportion of (1:2) when compared to the other formulations. In kneading method, the rate of dissolution of teneligliptin hydrobromide was increased in drug and Hydroxypropylmethylcellulose (HPMC) with the proportion of (1:2) when compared to the other formulations. Finally, solid dispersion containing HPMC, as a carrier, gave faster dissolution rates among all the formulations and was selected as the optimized formulation inthis study.


Keywords


Teneligliptin Hydrobromide, Antidiabetic, Dissolution enhancement, Solid Dispersion, HPMC, PVP

References