Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Assessment of the Protective Effects of Selenium and Zinc against Potassium Dichromate Induced Thyrotoxicity in Preimplanted Wistar albinos Rats


Affiliations
1 University of Batna2, Laboratory of Cellular and Molecular Physiotoxicology-Biomolecules, Faculty of Science of Nature and Life, Department of Biology of Organisms, 5078 Batna, Algeria
     

   Subscribe/Renew Journal


Hexavalent chromium is an environmental pollutant considered to be an endocrine-disrupting metal. Selenium and zinc are essential trace elements, known to play a crucial role in thyroid homeostasis. The purpose of the current work is to investigate the effects of potassium dichromate (K₂Cr₂O7) administrated subcutaneously (s.c) on the 3rd day of pregnancy in preimplanted rats by using graded doses (10, 50, 100 mg/kg, s.c) or K₂Cr₂O7 (10 mg/kg, s.c) in association with Selenium (0.3 mg/kg, s.c) and Zinc chloride (20 mg/kg, s.c). The hormonal profile, apoptosis induction and histological changes in thyroids were evaluated. Our main findings showed that K₂Cr₂O7 promoted hypothyroidism with a significant decrease in plasma T3 and T4 levels (P<0.001), while plasma TSH level increased significantly (P<0.001), in addition, a hypertrophy of the thyroid was noted (P<0.01). Moreover, K2Cr2O7 (10 mg/kg, s.c) induced apoptosis via the caspase 3 pathway (P<0.001) and altered the gland histoarchitecture. The co-treatment with Se or ZnCl₂ has ameliorated the hormonal status and restored partially the thyroid histoarchitecture. We concluded that the administration of Selenium and Zinc can prevent the hazardous effects of potassium dichromate on the hormonal and histological status of the thyroid gland in preimplanted Wistar albino rats.

Keywords

Potassium Dichromate, Preimplanted Rat, Selenium, Thyrotoxicity, Zinc.
User
Subscription Login to verify subscription
Notifications
Font Size

  • Gilbert ME, Rovet J, Chen Z, Koibuchi N. Developmental thyroid hormone disruption: Prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicol. 2012; 33:842-52. https://doi.org/10.1016/j. neuro.2011.11.005 PMid:22138353
  • Boas M, Feldt-Rasmussen U, Skakkebæk NE, Katharina MM. Environmental chemicals and thyroid function. Eur J Endocrinol. 2006; 154(5):599-611. https://doi. org/10.1530/eje.1.02128 PMid:16645005
  • Rodrigues-Pereira P, Palmero C, RÃ’mulo MM, et al. Influence of Organotin on thyroid morphophysiological status. J Environ Health Sci. 2015.
  • Ben Amara I, Bouaziz H, Guermazi F, Zeghal N. Effect of selenium on hypothyroidism induced by methima¬zole (MMI) in lactating rats and their pups. Acta Biol Hung. 2009; 61(2):145-57. https://doi.org/10.1556/ ABiol.61.2010.2.3 PMid:20519169
  • Ben Hamida F, Soussia L, Guermazi F, Rebai T, Zeghal N. Effets de deux antithyroïdiens (propyltiouracile et perchlorate) sur la fonction thyroïdienne de la souris en période d’allaitement. Ann. Endocrinol. 2001; 62:446- 53.
  • Ghorbel H, Fetoui H, Mahjoub A, Guermazi F, Zeghal N. Thiocyanate effects on thyroid function of weaned mice. C R Biol. 2008; 331:262-71. https://doi.org/10.1016/j. crvi.2008.01.010 PMid:18355748
  • Soussia L, Ben Hamida F, Guermazi F, Zeghal N. Induction et réversibilité d’action du thiocyanate sur la fonction thyroïdienne chez le rat en période d’allaitement. Ann. Endocrinol. 2004; 65:451-8. https://doi.org/10.1016/ S0003-4266(04)95950-1 PMid:15550887
  • Honglian Y, Wei Z, Qingxi K, et al. Effects of pubertal exposure to thiazole-Zn on thyroid function and devel-opment in female rats. Food and Chemic Toxicol. 2012; 53:100-104. https://doi.org/10.1016/j.fct.2012.11.003 PMid:23200888
  • Abdul-Hamid M, Salah M. Lycopene reduces deltame¬thrin effects induced thyroid toxicity and DNA damage in albino rats. JOBAZ. 2013; 66:155-63. https://doi. org/10.1016/j.jobaz.2013.08.001
  • Buha A, Antonijević B, Bulat Z, Jaćević V, Milovanović V, Matović V. The impact of prolonged cadmium exposure and co-exposure with polychlorinated biphe¬nyls on thyroid function in rats. Toxicol Lett. 2013; 221:83-90. https://doi.org/10.1016/j.toxlet.2013.06.216 PMid:23792431
  • Ibrahim MN, Eweis EA, El-Beltagi HS, Abdel-Mobdy YE. Effect of lead acetate toxicity on experimental male albino rat. Asian Pac J Trop Biomed. 2012; 2(1):41- 46. https://doi.org/10.1016/S2221-1691(11)60187-1 PMid:23569832
  • Mahmood T, Qureshi IZ, Nadeem MS, Khan MA. Hexavalent chromium toxicity in pituitary and thyroid glands. Pakistan J Zool. 2008; 40(2):91-7.
  • Cohen M, Kargacin B, Klein C, Costa M. Mechanisms of chromium carcinogenicity and tox¬icity. Crit Rev Toxicol. 1993; 23:255-81. https://doi. org/10.3109/10408449309105012 PMid:8260068
  • Richelmi P, Baldi C. Blood levels of hexavalent chro¬mium in rats. “In vitro” and “In vivo” experiments. Int J Environ Anal Chem. 1984; 17(3-4):181−6. https://doi. org/10.1080/03067318408076971 PMid:6746187
  • IARC (International Agency for Research on Cancer). Chromium, nickel and weldings. monograhs on the evaluation of carcinogenic risks to humas. IARC Monogr Eval Carcinog Risks Hum. 1990; 49:1-648.
  • Levis AG, Bianchi V. Mutagenic and cytogenetic effects of chromium compounds, in Langard S, editor. Biological and Environmental Aspects of Chromium, Amsterdam. 1982. p. 171-208. https://doi.org/10.1016/B978-0-444- 80441-9.50012-2
  • Nishio A, Uyeki EM. Inhibition of DNA synthesis by chromium compounds. J Toxicol Environ Health. 1985; 15:237-44. https://doi.org/10.1080/15287398509530650 PMid:3892022
  • ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for Chromium; 2012.
  • Adjroud O. 2010. Protective effects of selenium against potassium dichromate-induced hematotoxicity in female and male Wistar albino rats. Annales de Toxicologie Analytique. 2010; 22:165-72. https://doi.org/10.1051/ ata/2010025
  • Soudani N, Ben Amara I, Sefi M, Boudawara T, Zeghal N. Effects of selenium on chromium (VI)-induced hepatotoxicity in adult rats. Exp Toxicol Pathol. 2011; 63(6):541-8. https://doi.org/10.1016/j.etp.2010.04.005 PMid:20494564
  • Goodarzi Z, Karami E, Ahmadizadeh M. Simvastatin attenuates chromium-induced nephrotoxicity in rats. Nephropathol. 2017; 6(1):5-9. https://doi.org/10.15171/ jnp.2017.02 PMid:28042547 PMCid:PMC5106881
  • Jahnabi S, Choudhuri S, Choudhuri D. Effect of sub¬chronic exposure to chromium on hematological and biochemical parameters of male albino rat. Asian J Pharm Clin Res. 2017; 10(5):345-8. https://doi.org/10.22159/ ajpcr.2017.v10i5.17468
  • Khorsandi K, Rabbani-Chadegani A. Studies on the genotoxic effect of chromium oxide (Cr VI): Interaction with deoxyribonucleic acid in solution. Mut Res. 2013; 750(1-2):105-10. https://doi.org/10.1016/j. mrgentox.2012.10.002 PMid:23098859
  • Monteiro C, Conceição S, Bastos V, Oliveira H. Cr (VI)- induced genotoxicity and cell cycle arrest in human osteoblast cell line MG-63. J Appl Toxicol. 2019; 1-9. https://doi.org/10.1002/jat.3793 PMid:30883852
  • Fetoui H, Bouaziz H, Mahjoubi-Samet A, Soussia L, Guermazi F, Zeghal N. Food restriction induced thyroid changes and their reversal after refeeding in female rats and their pups. Acta Biol Hung. 2006; 57:391-402. https:// doi.org/10.1556/ABiol.57.2006.4.1 PMid:17278701
  • Arthur JR., Nicol F, Beckett GJ. Selenium deficiency, thyroid hormone metabolism, and thyroid hormone deiodinases. Am J Clin Nutr. 1993; 57(2):236-9. https:// doi.org/10.1093/ajcn/57.2.236S PMid:8427195
  • Contempre B, Duale NL, Dumont JE, Ngo B, Diplock AT, Vanderpas J. Effect of selenium supplementation on thyroid hormone metabolism in an iodine and selenium deficient population. J Clin Endocrinol. 1992; 36:579- 83. https://doi.org/10.1111/j.1365-2265.1992.tb02268.x PMid:1424183
  • Ibrahim SH, Naeem MR, ALshymaa AS. Effect of sele¬nium and zinc supplementation on hypothyroidism in rats. ARC J Nutri Growth. 2016; 2(2):16-27. https://doi. org/10.20431/2455-2550.0202002
  • Zimmermann MB. Iodine requirements and the risks and benefits of correcting iodine deficiency in popula-tions. J Trace Elem Med Biol. 2008; 22:81-92. https://doi. org/10.1016/j.jtemb.2008.03.001 PMid:18565420
  • Betsy A, Binitha MP, Sarita S. Zinc Deficiency associ¬ated with hypothyroidism: An overlooked cause of severe alopecia. Int J Trichology. 2013; 5(1):40-2. https:// doi.org/10.4103/0974-7753.114714 PMid:23960398 PMCid:PMC3746228
  • Triggiani V, Tafaro E, Giagulli VA, et al. Role of iodine, selenium and other micronutrients in thy¬roid function and disorders. Endocr Metab Immune Disord Drug Targets. 2009; 9(3):277-94. https://doi. org/10.2174/187153009789044392 PMid:19594417
  • Kryukov GV, Castellano S, Novoselov SV, et al. Characterization of mammalian selenoproteomes. Science. 2003; 1439-43. https://doi.org/10.1126/sci¬ence.1083516 PMid:12775843
  • Köhrle J, Jakob F, ContempréB, Dumont JE. Selenium, the thyroid, and the endocrine system. Endocr Rev. 2001; 26(7):944-84. https://doi.org/10.1210/er.2001- 0034 PMid:16174820
  • Thorlacius-Ussing O, Danscher G. Selenium in the anterior pituitary of rats exposed to sodium sel¬enite: Light and electron microscopic localization. Toxicol Appl Pharmacol. 1985; 81:67-74. https://doi. org/10.1016/0041-008X(85)90121-8 PMid:4049422
  • Thorlacius-Ussing O, Jensen FT. Selenium in the ante¬rior pituitary of the rat after a single injection of 75 Se sodium selenite. Biol Trace Elem Res. 1988; 15 277-287. https://doi.org/10.1007/BF02990144 PMid:2484525
  • Thorlacius-Ussing O, Gregersen M, Hertel N. The con¬centration of twelve elements in the anterior pituitary from human subjects and rats as measured by Particle Induced X-Ray Emission (PIXE). Biol Trace Elem Res. 1988; 16:189-202. https://doi.org/10.1007/BF02797135 PMid:2484548
  • Dumitrescu AM, Liao X-H, Abdullah MHS, et al. Mutations in the SBP2 gene produce abnormal thy¬roid hormone metabolism in man. Nat Genet. 2005; 37(11):1247-52. https://doi.org/10.1038/ng1654 PMid:16228000
  • Wastney ME, Aamodt RL, Rumble WF, Henkin RI. Kineticanalysis of zinc metabolism and its regulation in normal humans. Am J Physiol. 1986; 251:398-408. https://doi.org/10.1152/ajpregu.1986.251.2.R398 PMid:3740321
  • Barceloux DG. Zinc. J Toxicol Clin Toxicol. 1999; 37(2):279-92. https://doi.org/10.1081/CLT-100102426 PMid:10382562
  • Prasad S. Discovery of human Zinc deficiency: Its impact on human health and disease. Adv Nutr. 2013; 2:176-90. https://doi.org/10.3945/an.112.003210 PMid:23493534 PMCid:PMC3649098
  • Brandao-Neto J, Saturnino A, Leite LD, et al. Lack of acute zinc effect on thyrotropin-releasing hormone-stimulated thyroid-stimulating hormone secretion during oral zinc tolerance test in healthy men. Nutr Res. 2006; 26:493- 496. https://doi.org/10.1016/j.nutres.2006.08.010
  • Farooqi L, Mazeto GM, Shuhama T, Brandão-Neto J. Effects of a single venous dose of zinc on thyroid status in healthy individuals and patients with graves’ disease. Met Based Drugs. 2000; 7:151-5. https://doi.org/10.1155/ MBD.2000.151 PMid:18475939 PMCid:PMC2365210
  • Pekary AE, Lukaski HC, Mena I, Hershman JM. Processing of TRH precursor peptides in rat brain and pituitary is zinc dependent. Peptides. 1991; 12:1025-32. https://doi.org/10.1016/0196-9781(91)90055-T PMid:1800945
  • Adjroud O. 2009. Effects of potassium dichromate on haematological parametrs in female and male Wistar albino rats. Ass Univ Bull environ Res. 2009; 12:2.
  • Käkelä R, Käkelä A, Hyvärinen H. Effects of nickel chlo¬ride on reproduction of the rat and possible antagonistic role of selenium. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1999; 123:27-37. https://doi. org/10.1016/S0742-8413(99)00006-7 PMid:10390053
  • Paksy K, Varga B, Lázár P. Zinc protection against cad¬mium-induced infertility in female rats. Effect of zinc and cadmium on the progesterone production of cul¬tured granulosa cells. Bio Metals. 1996; 10:27-36.
  • Hadie SNH, Abdul Manan H, Abdulla S. Thyroid Gland Resection in euthanised Rat: A Practical Guide. Int Med J. 2013; 20 (1):1-4.
  • Bancroft JD, Gamble M. Theory and Practice of Histological Techniques. China. Churchill Livingstone: Elsevier; 2008.
  • Du Y, Bales KR, Dodel RC. Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci U S A. 1997; 94(21):11657- 62. https://doi.org/10.1073/pnas.94.21.11657 PMid:9326666 PMCid:PMC23571
  • ElBakry RH, Tawfik SM. Histological study of the effect of potassium dichromate on the thyroid follicular cells of adult male albino rat and the possible protective role of ascorbic acid (vitamin C). J Microsc Ultrastruct Environ Monit. 2014; 14:2121-6.
  • Mahmood T, Qureshi IZ, Iqba MJ. Histopathological and biochemical changes in rat thyroid following acute exposure to hexavalent chromium. Histol Histopathol. 2010; 25(11):1355-70.
  • Adeeko A, Li D, Forsyth DS, et al. Effects of in utero tributyltin chloride exposure in the rat on pregnancy outcome. Toxicol Sci. 2003; 74(2):407-415. https://doi. org/10.1093/toxsci/kfg131 PMid:12773765
  • Cooke GM, Tryphonas H, Pulido O, Caldwell D, Bondy GS, Forsyth D. Oral (gavage), in utero and postna¬tal exposure of Sprague-Dawley rats to low doses of tributyltin chloride. Part 1: Toxicology, histopathol¬ogy and clinical chemistry. Food Chem Toxicol. 2004; 42(2):211-20. https://doi.org/10.1016/j.fct.2003.09.003 PMid:14667468
  • Pilat-Marcinkiewicz B, Brzoska MM, Sawicki B, Moniuszko-Jakoniuk J. Structure and function of thy¬roid follicular cells in female rats chronically exposed to Cadmium. Bull Vet Inst Pulawy. 2003; 47:157-63.
  • Banu S, Stanley J, Lee J. Hexavalent chromium-induced apopto-sis of granulosa cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53. Toxicol Appl Pharmacol. 2011; 251(3):253-66. https://doi.org/10.1016/j.taap.2011.01.011 PMid:21262251 PMCid: PMC3131794
  • Bagchi D, Bagchi M, Stohs S. Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol Cell Biochem. 2001; 222(1/2):149-58. https://doi.org/10.1007/978-1-4615- 0793-2_18
  • Wen G, Ringseis R, Eder K. Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hor-mone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes. PLoSONE. 2017; 12(11). https:// doi.org/10.1371/journal.pone.0187561 PMid:29095946 PMCid:PMC5667865
  • Quinteros F, Poliandri A, Machiavelli L. In vivo and in vitro effects of chromium VI on anterior pituitary hor-mone release and cell viability. Toxicol Appl Pharmacol. 2007; 218(1):79-87. https://doi.org/10.1016/j.taap.2006. 10.017 PMid:17141818
  • Bandyopadhyay U, Kausik B, Banerjee KR. Extrathyroidal actions of antithyroid thionamides. Review article. Toxicol Lett. 2002; 128:117-27. https://doi.org/10.1016/ S0378-4274(01)00539-2 PMid:11869823
  • Dorea JG. Iodine nutrition and breast feeding. J Trace Elem Med Biol. 2002; 16:207-20. https://doi.org/10.1016/ S0946-672X(02)80047-5 PMid:12530582
  • Song M, Kim YJ, Park YK, Ryu JC. Changes in thyroid peroxidase activity in response to various chem¬icals. J Environ Monit. 2012; 14(8):2121-6. https://doi. org/10.1039/c2em30106g PMid:22699773
  • Cao J, Guo LH, Wan B, Wei Y. In vitro fluorescence dis¬placement investigation of thyroxine transport disruption by bisphenol A. J Environ Sci (China). 2011; 23:315-21. https://doi.org/10.1016/S1001-0742(10)60408-1
  • Gutleb CA, Cenijn P, Van-Velzen M, et al. In vitro assay shows that PCB metabolites completely saturate thyroid hormone transport capacity in blood of wild polar bears (Ursus maritimus). Environ Sci Technol. 2010; 44:3149- 54. https://doi.org/10.1021/es903029j PMid:20345174
  • Fortunato RS, Cristina E, De Souza L, et al. Functional Consequences of Dual Oxidase-Thyroperoxidase Interaction at the Plasma Membrane. J Clin Endocrinol Metab. 2010; 95(12):5403-11. https://doi.org/10.1210/ jc.2010-1085 PMid:20826581
  • Li ZH, Chen L, Wu YH, Li P, Li YF, Ni ZH. Effects of waterborne cadmium on thyroid hormone levels and related gene expression in Chinese rare minnow larvae. Comp Biochem Physiol. Part C Toxicol Pharmacol. 2014; 161:53-7. https://doi.org/10.1016/j.cbpc.2014.02.001 PMid:24521933
  • Hammouda F, Messaoudi I, El Hani J, Baati T, Saïd K, Kerkeni A. Reversal of cadmium-induced thyroid dys¬function by selenium, zinc, or their combination in rat. Biol Trace Elem Res. 2008; 126:194-203. https://doi. org/10.1007/s12011-008-8194-8 PMid:18685812
  • Yoshizuka M, Mori N, Hamasaki K, et al. Cadmium toxicity in the thyroid gland of pregnant rats. Exp Mol Pathol. 1991; 55:97-104. https://doi. org/10.1016/0014-4800(91)90021-O PMid:1884772
  • Prakash P, Kumar PG, Laloraya M, Javeri T, Marihar MS. Superoxide anion radical production as a cadmium-mediated mechanism of toxicity in avian thyroid: An electron spins resonance study by spin trapping. Comp Biochem Physiol. Part C Pharmacol Toxicol Endocrinol. 1997; 118:89-95. https://doi.org/10.1016/S0742- 8413(97)00082-0
  • Chaurasia SS, Gupta P, Kar A, Maiti PK. Free radi¬cal mediated membrane perturbation and inhibition of type-I iodothyronine 59-monodeiodinase activ¬ity by lead and cadmium in rat liver homogenate. Biochem Mol Biol Int. 1996; 39:765-70. https://doi. org/10.1080/15216549600201851 PMid:8843345
  • Gupta P, Chaurasia SS, Maiti PK, Kar A. Cadmium induced alterations in extrathyroidal conversion of thyroxine to triiodothyronine by type-I iodothyronine 59-monodeiodinase in male mouse. Horm Metab Res. 1997; 29:151-2. https://doi.org/10.1055/s-2007-979009 PMid:9137987
  • Schröder-van der Elst JP, Van der Heide D. Thyroxine, 3, 5, 3’-triiodothyronine, and 3, 3’, 5’-triiodothyronine concentrations in several tissues of the rat: Effects of ami¬odarone and desethylamiodarone on thyroid hormone metabolism. Endocrinol. 1991; 127(4):1656-64. https:// doi.org/10.1210/endo-127-4-1656 PMid:2401231
  • Ferreira AC, Lisboa PC, Oliveira KJ, Lima LP, Barros IA, Carvalho DP. Inhibition of thyroid type 1 deiodinase activity by flavonoids. Food Chem Toxicol. 2002; 40:913- 7. https://doi.org/10.1016/S0278-6915(02)00064-9 PMid: 12065212
  • Kohrle J. Local activation and inactivation of thyroid hormones: The deiodinase family. Mol Cell Endocrinol. 1999; 151:103-19. https://doi.org/10.1016/S0303-7207(99) 00040-4 PMid:10411325
  • Vom Saal FS, Akingbemi BT, Belcher SM, et al. Chapel Hill Bisphenol A expert panel consensus statement: Integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol. 2007; 24:131-8. https://doi. org/10.1016/j.reprotox.2007.07.005 PMid:17768031 PMCid:PMC2967230
  • Thomson CD, Campbell JM, Miller J, Skeaff SA, Livingstone V. Selenium and iodine supplementation: Effect on thyroid function of older New Zealanders. Am J Clin Nutr. 2009; 90:1038-46. https://doi.org/10.3945/ ajcn.2009.28190 PMid:19692495
  • Berry MJ, Banu L, Larsen PR. Type I iodothyronine deio¬dinase is a selenocysteine-containing enzyme. Nat. 1991; 349(6308):438-40. https://doi.org/10.1038/349438a0 PMid:1825132
  • Rasmussen LB, Schomburg L, Kohrle J, et al. Selenium status, thyroid volume, and multiple nodule formation in an area with mild iodine deficiency. Eur J Endocrinol. 2011; 164:585-90. https://doi.org/10.1530/EJE-10-1026 PMid:21242171
  • Zagrodzki P, Szmigiel H, Ratajczak R, Szybinski Z, Zachwieja Z. The role of selenium in iodine metabo¬lism in children with goiter. Environ Health Perspect. 2000; 108:67-71. https://doi.org/10.1289/ehp.0010867 PMid:10620526 PMCid:PMC1637847
  • Colzani RM, Alex S, Fang S, Stone LS, Braverman LE. Effects of iodine repletion on thyroid morphology in iodine and/or selenium deficient rat term fetuses, pups and mothers. Biochimie. 1999; 81:485-91. https://doi. org/10.1016/S0300-9084(99)80099-6 PMid:10403179
  • Miyazaki K, Watanabe C, Mori K, Yoshida K, Ohtsuka R. The effects of gestational arsenic exposure and dietary selenium deficiency on selenium and selenoenzymes in maternal and fetal tissues in mice. Toxicol. 2005; 208:357-65. https://doi.org/10.1016/j.tox.2004.11.030 PMid:15695021
  • Winther KH, Bonnema SJ, Cold F, et al. Does selenium supplementation affect thyroid function? Results froma randomized, controlled, double-blinded trial in a Danish population. Eur J Endocrinol. 2015; 172:657-67. https:// doi.org/10.1530/EJE-15-0069 PMid:25740851
  • Björkman U, Ekholm R. Hydrogen peroxide degradation and glutathione peroxidase activity in cultures of thyroid cells. Mol Cell Endocrinol. 1995; 111(1):99-107. https:// doi.org/10.1016/0303-7207(95)03552-I PMid:7649359
  • Hala ZE, Ibrahim KR, Hemmat HG. A histological study on the possible protective effect of selenium against chromium-induced thyrotoxicity in adult male albino rats. Egy J histol. 2016; 39(1). https://doi.org/10.1097/01. EHX.0000481747.20806.2d
  • Danforth EJr, Burger AG. The impact of nutrition on thyroid hormone physiology and action. Annu Rev Nutr. 1989; 9:201-27. https://doi.org/10.1146/annurev. nu.09.070189.001221 PMid:2669870
  • Napolitano G, Palka G, Lio S, et al. Is zinc deficiency a cause of subclinical hypothyroidism in Down syn-drome? Ann Genet. 1990; 33(1):9-15.
  • Satoshi N. 1983. Effects of sulfonamides on the pituitary-thyroid gland: 1. Morphological changes of thyroid gland and variation in plasma thyroxine and triiodothyronine. J Toxicol sci. 1983; 8:47-59. https://doi.org/10.2131/ jts.8.47 PMid:6876203
  • Yang H, Zhang W, Kong Q, et al. Effects of pubertal exposure to thiazole-Zn on thyroid function and devel-opment in female rats. Food and Chem Toxicol. 2013; 53:100-4. https://doi.org/10.1016/j.fct.2012.11.003 PMid:23200888
  • Aktac T, Bakar E. The histopathological changes in the mouse thyroid depending on the aluminium. J cell mol Biol. 2002; 1:69-72.
  • Matsunaga M, Eguchi K, Fukuda T, et al. The effects of cytokines, antithyroidal drugs and glucocorticoids on phagocytosis by thyroid cells. Acta Endocrinol (Copenh). 1988; 119:413-9. https://doi.org/10.1530/ acta.0.1190413 PMid:2461040
  • Khalaf AH, Arafat EA. Effect of different doses of mono¬sodium glutamate on the thyroid follicular cells of adult male albino rats: A histological study. Int J Clin Exp Pathol. 2015; 8(12):15498-510.
  • Bagchi D, Stohs JS, Downs BW, Bagchi M, Preuss GH. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicol. 2002; 180(1):5-22. https://doi. org/10.1016/S0300-483X(02)00378-5 PMid:12324196
  • McNabb A. Control of thyroid gland function. In Thyroid Hormones. New Jersey: Prentice Hall; 1992. p. 49-73.
  • Nudler S, Quinteros F, Miler EA, Cabilla JP, Ronchetti SA, Duvilanski BH. Chromium VI administration induces oxidative stress in hypothalamus and ante¬rior pituitary gland from male rats. Toxicol Lett. 2009; 185:187-92. https://doi.org/10.1016/j.toxlet.2009.01.003 PMid:19167472
  • Schomburg L, Kohrle J. On the importance of sele¬nium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol Nutr Food. 2008; 52:1235-46. https://doi.org/10.1002/mnfr.200700465 PMid:18686295
  • Cozzolino SF. Biodisponibility of de nutrients. 3a ed. Barueri, SP: Manole; 2009.
  • Zago MP, Oteiza PI. The antioxidant properties of zinc: Interactions with iron and antioxidants. Free Radic Biol Med. 2001; 31:266-74. https://doi.org/10.1016/S0891- 5849(01)00583-4 PMid:11440839
  • Maret W. The function of zinc metallothionein: A link between cellular zinc and redox state. J Nutr. 2000; 130:1455-8. https://doi.org/10.1093/jn/130.5.1455S PMid:10801959
  • Ferreira A, Matsubara LS. Free radicals: concepts, asso¬ciated diseases, defense system and oxidative stress (Portuguese). Rev Assoc Med Bras. 1997; 43:61-8. https://doi.org/10.1590/S0104-42301997000100014
  • Thirunavukkarasu C, Sakthisekaran D. Effect of sele¬nium on N-nitrosodiethylamine-induced multistage hepatocarcinogenesis with reference to lipid peroxida¬tion and enzymatic antioxidants. Cell Biochem Funct. 2001; 19:27-35. https://doi.org/10.1002/cbf.895 PMid: 11223868

Abstract Views: 75

PDF Views: 0




  • Assessment of the Protective Effects of Selenium and Zinc against Potassium Dichromate Induced Thyrotoxicity in Preimplanted Wistar albinos Rats

Abstract Views: 75  |  PDF Views: 0

Authors

Anfal Fedala
University of Batna2, Laboratory of Cellular and Molecular Physiotoxicology-Biomolecules, Faculty of Science of Nature and Life, Department of Biology of Organisms, 5078 Batna, Algeria
Ounassa Adjroud
University of Batna2, Laboratory of Cellular and Molecular Physiotoxicology-Biomolecules, Faculty of Science of Nature and Life, Department of Biology of Organisms, 5078 Batna, Algeria
Asma Saouli
University of Batna2, Laboratory of Cellular and Molecular Physiotoxicology-Biomolecules, Faculty of Science of Nature and Life, Department of Biology of Organisms, 5078 Batna, Algeria
Imene Salah
University of Batna2, Laboratory of Cellular and Molecular Physiotoxicology-Biomolecules, Faculty of Science of Nature and Life, Department of Biology of Organisms, 5078 Batna, Algeria

Abstract


Hexavalent chromium is an environmental pollutant considered to be an endocrine-disrupting metal. Selenium and zinc are essential trace elements, known to play a crucial role in thyroid homeostasis. The purpose of the current work is to investigate the effects of potassium dichromate (K₂Cr₂O7) administrated subcutaneously (s.c) on the 3rd day of pregnancy in preimplanted rats by using graded doses (10, 50, 100 mg/kg, s.c) or K₂Cr₂O7 (10 mg/kg, s.c) in association with Selenium (0.3 mg/kg, s.c) and Zinc chloride (20 mg/kg, s.c). The hormonal profile, apoptosis induction and histological changes in thyroids were evaluated. Our main findings showed that K₂Cr₂O7 promoted hypothyroidism with a significant decrease in plasma T3 and T4 levels (P<0.001), while plasma TSH level increased significantly (P<0.001), in addition, a hypertrophy of the thyroid was noted (P<0.01). Moreover, K2Cr2O7 (10 mg/kg, s.c) induced apoptosis via the caspase 3 pathway (P<0.001) and altered the gland histoarchitecture. The co-treatment with Se or ZnCl₂ has ameliorated the hormonal status and restored partially the thyroid histoarchitecture. We concluded that the administration of Selenium and Zinc can prevent the hazardous effects of potassium dichromate on the hormonal and histological status of the thyroid gland in preimplanted Wistar albino rats.

Keywords


Potassium Dichromate, Preimplanted Rat, Selenium, Thyrotoxicity, Zinc.

References





DOI: https://doi.org/10.18311/ti%2F2023%2Fv30i1%2F24528