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Abstract

The present effort deals about oscillation of solutions of impulsive hyperbolic differential equations with distributed deviating
arguments. Sufficient conditions are obtained for the oscillation of solutions using impulsive differential inequalities and
integral averaging scheme with boundary condition. Example is provided to illustrate the obtained results.
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1. Introduction

In recent years considerable attention has been given to the
study of oscillation and nonoscillation results with continu-
ous distributed deviating arguments[4],[5],[8-13],[15-17].
The study of impulsive partial differential equations is
motivated by having many applications in population
models[4],[7], single species growth[6], quenching prob-
lems[3] and various scientific models[18],[19] with the
boundary conditions of the type Dirichlet, Neumann and
Robin. The current research focus on oscillation of the fol-
lowing impulsive partial differential equation

&
or’

_gri (x, t)u (X= O; (t))

=a (I)Au (x,t) + b(t)Au (x, z'(t))

o) £ (e (1.2)))n(@)a %1,

(x,1) € X (0,40) =G,

u(x,t;):(l+ak)u(x,tk)

*Author for correspondence

u, (x,t;)=(1+ﬂk)ut(x,tk), k=1,2,....

with

(1)

u=0, (x,1)edQX(0,+w), @

where Ais the Laplacian inR" and Q is a bounded

domain in R" with a piecewise smooth boundary 0.

Now we present a set of conditions that will be assumed
throughout the paper.

(H,)a(1).b(r) € PC([0,4%),[0,40)), wherePC represents

the set of functions which are piecewise continuous with
discontinuous of the first kind in ¢ = ¢, and left continuos

att=r

(H,) r,(x.t) e C(QX[0,+0),[0,+)),
D,(t)=minr (x,1), g(x,,¢) € C(QXR X[e,d|,R"),
0(1.€)=ming(x.1.£). / (u) e C(E .R)
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is convex in R+,uf(u) >0 and S (u) >es>0 foru#0.

u

(H,)z(t)e C([0,+oo),R),1imr(t) = +o0,

—

o,(t)e C([0,+oo),R),tl_i>r+11 o, (t)=+w,0(1)= max o, (1),

i=12,....nv(t,£) e C(R"X[c d]R),
v(t,f)Stforf E[c,d] and V(t,f) is nondecreasing

with respect to t and £ respectively. More over

hrr?r[lf v(t,&)=+0,n(&) :[c,d]— R is nondecreasing
and also the integral in (1) is a stieltjes integral”.
(H4) u(x,t),ur (x,t)e PC(G,R),ak >-18,>-la,<p,, the

sequence t, is a fixed strictly increasing sequence of posi-

tive real numbers with #, — 00 as k — oo,

2. Preliminaries

We begin with definitions, known results, notations and
Lemma which arerequired throughout this paper.

Definition 2.1

By a solution of (1)-(2) we mean a function u such that

ue C*(QX[w,+w),R)~ C(QX

that satisfies (1), where

[w2,+oo), ]R)

w, = min{O, min {infv(t,ﬁ)}},

gefe.d] | 120

>0 Isisn | 420

w, =min{0,infz'( )uinfin s )}} .

Now with this definition of solution, we can precisely
define what we mean by oscillation.

Definition 2.2

A nontrivial solution u is said to be oscillatory in G if for
each | >0, there exists a point (xo,to) EQX[I,—!—OO)
such that u(xo, ) 0 holds.
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It is identified that [14], the least eigenvalue ﬂvo >0 of the

eigenvalue problem
Aa)(x) + /La)(x) =0,
a)(x) =0,

in Q,
on 0Q,

and the consequent eigen function (/)(t) >0 in Q

For each positive solution u (x, t) of (1),(2) we define the

functions

A(t) = Kw-[u (x,t)(p(x)dx,
?)

where

d

e [o(1.¢)dn(&).

c

U¢ ] Jol=far£(0)-

Lemma 2.3.2

Suppose that y(r)ec? ([[o,oo)’R) and thaty(t) > O,y’(t) >0

and y"(1)<0 for t21,>0. (3) Then for any A, € (O’l)’

there exists a number t, > 1, such that y(l‘) > /11ty(t) for

121 (4)

In Section 3, we discuss the oscillation of the problem
(1) - (2) in detail, and in Section 4, an example is presented
to verify main results.

3. Main Results

Theorem 3.1 Assume that conditions (H ) -(H,) hold and

that every solution u(x,t) of (1),(2) is oscillatory in G, if
the impulsive delay differential inequality

)+ 30,0 4(0, (1)~ £() A(r(1£))
<O, t#t,,t21,

At )=(1+a,) A(t,)
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A(6)=(1+B) A (4,)k=1,2,....5)

has no eventually positive solutions.
Proof.

Let u(x,7) >0 be a non-oscillatory solution. Then there
exists a £, >, >0 such that 7(¢)>0, o,(7)>0and
v(1,E)20 for (1,&)e
u(x,z(t))>0, for (x,t) e QX (1,,+),

[t1,+oo)X[c,d], we get that

u(x, o, (t)) > O,for(x,t) IS QX(tl,+oo), i=12,.n

and u(x,v(t,é)) >0, for (%.4,£)eQX(t,+0)X[c,d].
Multiply Equation (1) by K, (pgo(x) > 0 and integrate over

with respect to x , we obtain

p UKu x,1)p(x )dx}

=a (t)IKwAu (x,t)(p(x)dx +b(t)jK¢Au (x, T(t))(p(x)dx

2 2

n

—Zj.ri (x,t)Kwu (x, o, (t))go(x)dx

=l Q

+_”f( xvtf ) wq(x,t,f)

o(x)dn(&)dx. ©)

Appling Green’s formula and Equation (2), we get that

K(/,J'(p(x)Au(x,t)dx =—A,A(1).
e,
K(pJ}o(x)Au (x,t)dx <0 (7)
2
and

K¢jggo(x)Au (x, T (t))dx = —/"LOA(T(t)).

(8)
Kq].[go(x)Au (x, r(t))dx <0.
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Here dS is surface component on OC). Furthermore
applying Jensen’s inequality for convex functions and using

the assumptions in ( /), we get that

d

ij(”(x’v(t’f)))K(p‘](x,faf)(D(x)dn(f)dx

c

> fo(egye [ L e)el)dints)

2eiA(v(t,f))Q(t,ff)dﬂ(f)", ©)

where A( IK ulx v(t f)) ( )dx.

Combining (6)-(9), we get that

Z.[D K u X,0, (t))go(x)dx

=l Q

+GIA(V<f,5))Q<t,§)dn<f>,

ZA( 0))D,(t)-A(v(t.£))E(t) <0, t#1,, t>4.

Where E IQ té: dn f)

Also, multiply (1) by K (p(p(x) > 0, integrate over (0, and

from (H,) we obtain

LK(pu (x, tk*)(o(x) dx

=(1+a,) [Ku(x.1,)o(x)dx,

Fort =1,
At )=(1+a,) A(t,)
A(6)=(1+8,)4'(1,), k=1,2,....
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Therefore A(t)is an eventually positive solution of (5).

This disagrees the hypothesis.
Theorem 3.2. Suppose that (H,) - (H ;) hold. If for every

number A,,A, € (0,1),

iy § T1 (12 S (10280610 |a=1. 10

2 st <s 1+ a,

then every solution u(x,t) of Equations (1), (2) is oscilla-
tory in G.

Proof. On the contrary, let u(x,t) be a nonoscillatory
solution of Equations (1), (2) which we assume to be posi-
tive. Now we can use

ZA( )0,
By Lemma 2.4
A((Ti (t)) >0, (1) 44 (01. (t)) and
A(v(.E))2v(.E) 2,4 (v(1.€)), 124,
From this,
DYIGLIGERILIO) "
—E(t)v(6,E) 1A' (v(1.€

Define

—A(v(1.€))E(1)<0, 121,

) <0121,

S\U+a,

B(t): H (”ﬂﬂj A(t). In fact, B(t) is continuous on

l+e,

every [tk ey ] andin consideration of B(; ) < (H/J)"JB(Q ),
it follows for ¢ 2, the following inequality does not have

eventually positivesolution when inequality (11) does not

have the same solution.
+30,(6)D,(1)B (5,(1)
~E(t)v(1.6) 4B (v(1.£)) < 0,1 214,

Where

a(s)= 1 (122:] o)

ly<t <ty
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-1 (12 =500,

1+e,

ofe)= T1 (122:) o)

1y<t; <t 1+ 27

- 11 [Hﬁkj (t.)=B(t,).

1<t <ty 1+ a,

Which gives that, B (t) is continuous on [t0,+00) . Then
we get that

(12 a0

ty<t <t 1+ a;

Saewno 112

toSte<t 1+ a,

£t IT (12

to<te<t 1+ a,

Integrate the previous inequality betweenO'(t ) and?, we
have

[T (12 [40)-4(o )]

1o <t <t 1+0{k
L 148 )
+J. 1216i (s)D,(s) H [ﬁ] A'(ai(s))ds
o(t) i= 1<ty <s k
-1
( 1+ :
- J.AZE(S)V(S,g) H (%j A (v(s,f))ds
o'(t) o<ty <s k
<0, t=¢,.
Therefore,
h 1+,
L1 8 eier-seenic
<1 ’A'([) <1,
A (G(t))
and hence
: 0 1+ 8, ]
1 Pk
lrzlliuP -!-)tolls[lJrak

S0 (6)D.6)- 2B () (58) <1,

(12)
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which made a contradiction with (10). The proof when

u (x, t ) < 0 is similar and will be omitted here.

4. Example

The present section contains an example to point up the
key results established in Section 3.

Example 4.1.Consider the following equation

2
gth:%Au(x,l)+Au(x,t—37r/2)
5 0
——u(x,t—;r)— Iu(x,t+§)d§,
2 —-/2
t#t,,t>1
u(x,t,:):(l+ak)u(x,tk)
ut(x,t;)=(l+ﬂk)ut(x,tk), k=1,2,.... (13)

for (x,t) € (0,7) X (0,+00), with

u(O,t)zu(n,t)zO.
Here

Q:(O,ﬂ),a:g,b(t)zl,r(t)=t-—,

(14)

f(u):u,v(t,g):z+g,ak:2ik,

B.=2",e=1 and E(s):%.

Also, we see from the above assumption that the hypoth-
eses (H )-(H,) hold, moreover

- 1+8, ) F 1+2°
fm[ 11 [1+aj_ J H[1+(1/2")st

tolo St <s 1 I<<s

:]LH2"ds+]z‘H2"ds+thdes+...

1<ty <s I I<t; <s I I<t; <s

Now, the condition (10) reads,

limsupj H 2¢ {%(s—ﬂ)+%(s+§)}ds

- \ oSt <s
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>1. (15)

Thus the provisions of the Theorem 3.2 are fulfilled and
hence all the solutions of Equations (13)-(14) are oscil-

latory in G. Actually u(x,t) =sinxcost is one such

solution.
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