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Abstract: Liver disorders are most common in the world 
in recent times. In this study, an automated intelligent 
diagnostic approach has been proposed to indicate the 
liver disease by various sorts and separating facts of the 
disease using Adaptive Neuro Fuzzy Inference System 
(ANFIS) and Fuzzy C-Means (FCM) techniques. The 
data required to study has been chosen by more complex 
Neuro Fuzzy Model before its inspection on the clinical 
data. In order to ensure the adeptness of the physician, 
diagnosing the liver disease and prescribing the absence of 
sensational ways is very energetic assignment. To make the 
process more meaningful and scientific a data of about 583 
patients, who were undergoing treatment of the doctors 
in various hospitals, is collected. Since the study includes 
the detailed information of the patient, so pre-processing 
was done. The Neuro Fuzzy techniques have been applied 
over the patient data. The results of these valuation show 
that Neuro Fuzzy technique can be applied successfully for 
advising the anesthetic for liver disease patient.

Keywords: AI, ANFIS, FCM, Machine learning, Neuro 
fuzzy.

I. Introduction

Being a vital organ of the human physique, Liver forms an 
essential part in the physiological system such as regulation of 
most chemical levels in the blood, production of bile and certain 
proteins for blood plasma, clearance of bilirubin, detoxification 
of blood, etc. But Liver disorders in particular hepatitis, liver 
tumours, and cirrhosis are progressively increasing over the 
years and have been emerging as the fifth casual agent resulting 
in death throughout the world according to National statistics in 
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the UK [1]. Liver disorders are known as the second foremost 
fatality reason in the midst of gastrointestinal morbidity in the 
United States [2]. According to the CDC and American Liver 
Foundation, almost 31,000 people die from cirrhosis and 4000 
people die from hepatitis in the US annually [3]. In fact liver 
disorders claimed 259,749 deaths in India in 2017 [4]. World 
Health Organization too started Global Burden of Disease 
(GBD) Project to assess persistent mortality and morbidity rate 
fluctuating with location, gender and other factors [5]. 

This alarms an urgent need for the effective timely diagnosis 
and treatment to mitigate the mortality rate worldwide. Liver 
disorders can be diagnosed with blood tests, imaging test and 
tissue analysis. But expected results have not been achieved 
so far. Soft computing techniques have been promising out as 
medical expert systems for assisting medical practitioners for 
accurate diagnosis of the diseases. This paper presents a soft 
computing technique based on Neuro-Fuzzy System (NFS) for 
effective diagnosis of liver disorder.

II. Aims and Objective

The main objective of this paper is to present an intelligent 
diagnostic liver disorder system based on simplified ANFIS and 
hybrid ANFIS with FCM technique. This paper also aims to 
evaluate the performance between these two systems.

III. Literature Review

Being a soft computing technique, Neuro-Fuzzy System (NFS) 
has been emerging an important research domain in medical 
diagnosis to be used by researchers for various typical disease 
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diagnoses since few years as it can handle the issues, such as 
nonlinearity, multidimensionality, and vagueness in data. A 
survey has been done on NFS techniques proposed by various 
researchers to diagnose various medical diseases.

Mohd Fauzi bin Othman et al. [6] introduced a fuzzy-neural 
diagnostic system for detection and analysis of medical 
complications. The main objective of their study was to find out 
the suitability and performance of FCM classification technique 
(as compared to the conventional Sub-clustering algorithm) as a 
classifier in neuro fuzzy model ANFIS for diagnosing diabetes. 
This system achieved the accuracy of 72.66% as compared to 
conventional approach that had shown accuracy of 71.09%. A. 
Q. Ansari and Neeraj Kumar Gupta [7] presented an adaptive 
neuro fuzzy inference system integrated with back propagation 
learning algorithm for automatic diagnosis of Asthma. 
Subhagata Chattopadhyay [8] also proposed neuro-fuzzy 
system based on Mamdani’s fuzzy logic controller integrated 
with feed forward back propagation algorithm for the diagnosis 
of depression. This model predicted accuracy of 95.50% with 
100% precision. R. Sampath and A. Saradha [9] presented 
a fuzzy neural diagnostic classifier based on Runge Kutta 
method to diagnose Alzheimer’s disease from MRI images. 
The proposed approach consists of the steps:  pre-processing 
the MRI images using histogram based thresholding approach, 
normalization of preprocessed image to MNI standard using 
SPM2, parcellation of brain scan into 8 ROI using spatial FCM 
algorithm, feature extraction and classification of features by 
ANFIS and Runge Kutta learning algorithm. Geetha C. and 
Pugazhenthi D. [10] proposed Fuzzy Neural Network (FNN) 
diagnostic classifier integrated with Discrete Wavelet Transform 
(DWT) for automated multiclass diagnosis of Dementia i.e. 
Alzheimer, Mild Cognitive Impairment (MCI) and Huntington 
from MRI images. The features derived from MRI images 
by DWT technique was utilized for the purpose of training 
a FNN in order to classify the features into three classes like 
Alzheimer’s, Mild Alzheimer’s and Huntington’s disease. Then 
proposed DWT with FNN classifier was compared with DCT 
(Discrete Cosine Transform) with Artificial Neural Network 
(ANN) and Support Vector Machine (SVM). The proposed 
system provided better accuracy than ANN.

IV. Methodology

This study presents a Liver disorder diagnostic approach 
based on simplified ANFIS and ANFIS with FCM. The dataset 
for the study has been taken from Kaggle [11] and consists 
of 583 instances. Each patient record has various clinical 
parameters as shown in Table I. The data acquired is pre-
processed with generalized methods and also normalized with 
different statistical methods. For achieving the objectives of 
the study, two main AI techniques i.e. Simplified ANFIS with 
subtractive clustering and ANFIS integrated with FCM have 

been employed. The overall architecture for the proposed 
methodology is shown in Fig. 1.  
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Table I: Clinical Parameters in Dataset

S. No. Parameter Description
1 Age Age of the patients
2 Gender Sex of the patients

3 Total_Bilirubin Total Billirubin in mg/dL
4 Direct_Bilirubin Conjugated Billirubin in 

mg/dL
5 Alkaline_Phosphotase ALP in IU/L
6 Alamine_Aminotrans-

ferase
ALT in IU/L

7 Aspartate_Amino-
transferase

AST in IU/L

8 Total_Protiens Total Proteins g/dL
9 Albumin Albumin in g/dL
10 Albumin-Globulin 

Ratio
A/G ratio

A. Adative Neuro Fuzzy Inference System (ANFIS)

Neuro-fuzzy system is a machine learning technique introduced 
to get better a fuzzy system automatically by exploiting the 
learning algorithms from neural network. It integrates the 
human reasoning ability of fuzzy logic and learning capability 
of neural network for tuning the parameters of fuzzy logic. 
The framework of NFS is shown in Fig. 2. In this architecture, 
the fuzzy interface accepts the input in the form of linguistic 
statements and generates the vector to be given to neural 
network that can be trained by learning algorithm to yield 
desired decisions. In this study, linguistic statements are given 
in the form of if-else rule base that will be generated by Fuzzy 
Inference System (FIS) and hybrid learning algorithm is 
implemented and the final decision to be taken is whether the 
patient has liver disease or not.
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Table III: Evaluation of Simplified ANFIS with ANFIS 
Integrated with FCM

Error ANFIS ANFIS with 
FCM

Training RMSE 0.355 0.3877
Validation Error dur-
ing training

0.5278 0.4869

Validation error dur-
ing testing

.57394 0.4636

Testing RMSE 1.1728 0.4414

VI. Conclusion

In this work, it has been found out that the proposed 
methodology is able to diagnose the liver disorder with better 
accuracy. It can also be seen that the performance of a hybrid 
model of ANFIS is better than simplified ANFIS model. The 
experimental results show that the proposed hybrid technique 
ANFIS with FCM have a high accuracy in terms of error in 
predicting the liver disease on the liver disease dataset. We can 
use such hybrid techniques for other disease datasets as well as 
for health care issues too.  
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