Open Access Open Access  Restricted Access Subscription Access

The Role of MgO Modifier on Physical, Structural, Optical and Thermoluminescence Properties of Lithium Borate Glass System


Affiliations
1 Department of Physics, Mata Gujri College, Fatehgarh Sahib 140 407, India., India
2 Department of Physics, Punjabi University, Patiala 147 002, India., India
3 Department of Chemistry, Mata Gujri College, Fatehgarh Sahib 140 407, India., India
 

Synthesis of lithium borate glass system was carried using the melt quenching technique with varying concentrations of magnesium followed by analysing the different characteristics such as physical, structural, optical and thermoluminescene using various techniques eg. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, and Thermoluminescence (TL). The obtained XRD pattern confirmed the amorphous nature of the prepared samples. Relevant physical parameters have been evaluated to study the response of these properties with respect to magnesium content. The density and molar volume values showed that the network structure changed with increasing magnesium content. It is evident from the FTIR spectra that the network of the prepared samples predominantly contains BO3and BO4 units. The UV-vis spectra confirmed a decrease in the direct and indirect band gap values with increase in MgO content. Optical parametersnamely refractive index, electronic polarizability, reflection loss and dielectric constant were also calculated and found to be in good correlation with other studies. Following gamma rays irradiation with different doses, TL glow curves of prepared glasses were analysed. Deconvolution of TL glow curves was done using glow curve convolution deconvolution (GCCD) function and trapping parameters of isolated peaks viz. activation energy and frequency factor have been determined.

Keywords

Borate Glasses, X Ray Diffraction, FTIR Spectroscopy, Thermoluminescence.
User
Notifications
Font Size

  • Ramteke D, Swart H & Gedam R,J Rare Earths, 35 (2017) 480.
  • Anishia S, Jose M, Annalakshmi O & Ramasamy V, J Lumin, 131 (2011) 2492.
  • Varshneya A K, Fundamentals of inorganic glasses, Academic Press, New York, (2013) 106.
  • Shelby J E, Introduction to glass science and technology, Royal Society of Chemistry, United Kingdom, (2005) 76.
  • Kirdsiri K, RamakrishnaR R, Damdee B, Kim H, Kaewjaeng S, Kothan S & Kaewkhao J,J Alloys Compd, 749 (2018) 197.
  • Arunkumar S & Marimuthu K,J Lumin, 139 (2013) 6.
  • Shamshad L, Rooh G, Kirdsiri K, Srisittipokakun N, Damdee B, Kim H & Kaewkhao J,Opt Mater, 64 (2017) 268.
  • Zaman F, Rooh G, Srisittipokakun N, Kim H, Kaewnuam E, Meejitpaisan P & Kaewkhao J,Radiat Phys Chem, 130 (2017) 158.
  • Kumar K U, Babu S S, Rao C S & Jayasankar C,Opt Commun, 284 (2011) 2909.
  • Yuan S X, Hao X Z & Ping Z J,Opt Mater, 50 (2015) 110.
  • Jorgensen C K & Judd B,Mol Phys, 8 (1964) 281.
  • Konijnendijk W L & Stevels J M,J Non-Cryst Solids, 18 (1975) 307.
  • Hashim S, Mhareb M, Ghoshal S, Alajerami Y, Bradley D, Saripan M, Tamchek N & Alzimami K,Radiat Phys Chem, 116 (2015) 138.
  • Lakshmikantha R, Rajaramakrishna R, Anavekar R & Ayachit N,Mater Chem Phys, 133 (2012) 249.
  • Furetta C, Prokic M, Salamon R, Prokic V & Kitis G,Nucl Instrum Meth Phys Res A: Accel Spectrom Detect Assoc Equip, 456 (2001) 411.
  • Prokic M,Radiat Meas, 33 (2001) 393.
  • Elkholy M,J Lumin, 130 (2010) 1880.
  • Alajerami Y S M, Hashim S, Hassan W M S W, Ramli A T & Kasim A,Physica B Condens Matter, 407 (2012) 2398.
  • Mhareb M, Hashim S, Ghoshal S, Alajerami Y, Saleh M, Dawaud R, Razak N & Azizan S,Opt Mater, 37 (2014) 391.
  • Bhogi A, Kumar R V & Kistaiah P,J Non-Cryst Solids, 426 (2015) 47.
  • Liu L, Zhang Y, Hao J, Li C, Tang Q, Zhang C & Su Q, Mater Lett, 60 (2006) 639.
  • Li J, Hao J, Li C, Zhang C, Tang Q, Zhang Y, Su Q & Wang S,Radiat Meas, 39 (2005) 229.
  • Saidu A, Wagiran H, Saeed M, Obayes H, Bala A & Usman F,Radiat Phys Chem, 144 (2018) 413.
  • Hashim S, Mhareb M, Ghoshal S, Alajerami Y, Saripan M & Bradley D,Radiat Phys Chem, 137 (2017) 45.
  • El-Adawy A, Khaled N, El-Sersy A, Hussein A & Donya H, Appl Radiat Isot, 68 (2010) 1132.
  • Wu L, Chen X, Tu Q, He M, Zhang Y & Xu Y,J Alloys Compd, 333 (2002) 154.
  • Bazarova Z G, Nepomnyashchikh A, Kozlov A, Bogdan-Kurilo V, Bazarov B, Subanakov A & Kurbatov R,Russ J Inorg Chem, 52 (2007) 1971.
  • Khor S, Talib Z & Yunus W M,Ceram Int, 38 (2012) 935.
  • Lim T Y, Wagiran H, Hussin R, Hashim S & Saeed M, Physica B Condens Matter, 451 (2014) 63.
  • Mugoni C, Gatto C, Pla-Dalmau A & Siligardi C,J Non-Cryst Solids, 471 (2017) 295.
  • Berkemeier F, Voss S,Imre Á W & Mehrer H,J Non-Cryst Solids, 351 (2005) 3816.
  • López R & Gómez R,J Solgel Sci Technol, 61 (2012) 1.
  • Mortazavi-Derazkola S, Zinatloo-Ajabshir S & Salavati-Niasari M,J Mater Sci: Mater Electron, 26 (2015) 5658.
  • Kubelka P & Munk F,Z Tech Phys, 12 (1931) 259.
  • Kubelka P,J Opt Soc Am, 38 (1948) 448.
  • Abd El-Moneim A,Mater Chem Phys, 52 (1998) 36.
  • Abd El-Moneim A, Youssof I & Abd El-Latif L,Acta Mater, 54 (2006) 3811.
  • Sidkey M, Abd El-Moneim A,Gaafar M, Abd El-Aal N, Abd El-Latif L & Youssof I,Philos Mag Lett, 88 (2008) 1705.
  • Alajerami Y S M, HashimS, Hassan W M S W & Ramli A T,Physica B Condens Matter, 407 (2012) 2390.
  • Ichoja A, Hashim S, Ghoshal S, Hashim I & Omar R,J Rare Earths, 36 (2018) 1264.
  • Prabhu N S, Hegde V, Wagh A, Sayyed M, Agar O & Kamath S D,J Non-Cryst Solids, 515 (2019) 116.
  • Arya S, Kaur G & Singh K,J Non-Cryst Solids, 432 (2016) 393.
  • Kim D, Kim W, Park E, Mattern N & Eckert J,Prog Mater Sci, 58 (2013) 1103.
  • Phillips G, A concise introduction to ceramics (Springer Science & Business Media, New York), 2012, p. 12.
  • Ramteke D & Gedam R,Spectrosc Lett, 48 (2015) 417.
  • Pawar P, Munishwar S & Gedam R,J Alloys Compd, 660 (2016) 347.
  • Jayasimhadri M, Jang K, Lee H S, Chen B, Yi S-S & Jeong J H,J Appl Phys, 106 (2009) 013105.
  • Nawaz F, Sahar M R, Ghoshal S, Amjad R J, Dousti M & Awang A,Chin Opt Lett, 11 (2013) 061605.
  • Kaur R, Rakesh R, MhatreS G, Bhatia V, Kumar D, Singh H, Singh S P & Kumar A,Opt Mater, 117 (2021) 111109.
  • Kitis G, Gomez-Ros J & Tuyn J W,J Phys D: Appl Phys, 31 (1998) 2636.
  • Puchalska M & Bilski P,Radiat Meas, 41 (2006) 659.
  • Salama E & Soliman H,Radiat Phys Chem, 148 (2018) 95.
  • Balian H G & Eddy N W,Nucl Instrum Methods, 145 (1977) 389.
  • Salah N, Sahare P, Nawaz S & Lochab S,Radiat Eff Defects Solids, 159 (2004) 321.
  • Bossin L, Kazakis N A, Kitis G & Tsirliganis N C,Appl Radiat Isot, 127 (2017) 26.
  • Gómez-Ros J M, Correcher V, García-Guinea J & Delgado A,Radiat Prot Dosim, 100 (2002) 399.
  • Azizan S, Hashim S, Razak N, Mhareb M, Alajerami Y & Tamchek N,J Mol Struct, 1076 (2014) 20.
  • Lakshminarayana G, Kaky K M,Baki S, Lira A, Nayar P, Kityk I & Mahdi M,J Alloys Compd, 690 (2017) 799.
  • Edukondalu A, Kavitha B, Samee M, Ahmmed S K, Rahman S & Kumar K S,J Alloys Compd, 552 (2013) 157.
  • Edukondalu A, Srinivasu C, Rahman S & Kumar K,Int J Sci Eng, 5 (2014) 258.
  • Verhoef A & Den H H,J Non-Cryst Solids, 182 (1995) 235.
  • Verhoef A & Den H H,J Non-Cryst Solids, 182 (1995) 221.
  • Gautam C, Yadav A K & Singh A K,Int Sch Res Notices, 2012 (2012).
  • Kaky K M, Lakshminarayana G, Baki S, Taufiq-Yap Y, Kityk I & Mahdi M,J Non-Cryst Solids, 456 (2017) 55.

Abstract Views: 69

PDF Views: 58




  • The Role of MgO Modifier on Physical, Structural, Optical and Thermoluminescence Properties of Lithium Borate Glass System

Abstract Views: 69  |  PDF Views: 58

Authors

Navjeet Kaur
Department of Physics, Mata Gujri College, Fatehgarh Sahib 140 407, India., India
Vijeta Bhatia
Department of Physics, Punjabi University, Patiala 147 002, India., India
Dinesh Kumar
Department of Physics, Punjabi University, Patiala 147 002, India., India
Ritika Arora
Department of Physics, Punjabi University, Patiala 147 002, India., India
Manpreet Kaur
Department of Chemistry, Mata Gujri College, Fatehgarh Sahib 140 407, India., India
Supreet Pal Singh
Department of Physics, Punjabi University, Patiala 147 002, India., India

Abstract


Synthesis of lithium borate glass system was carried using the melt quenching technique with varying concentrations of magnesium followed by analysing the different characteristics such as physical, structural, optical and thermoluminescene using various techniques eg. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, and Thermoluminescence (TL). The obtained XRD pattern confirmed the amorphous nature of the prepared samples. Relevant physical parameters have been evaluated to study the response of these properties with respect to magnesium content. The density and molar volume values showed that the network structure changed with increasing magnesium content. It is evident from the FTIR spectra that the network of the prepared samples predominantly contains BO3and BO4 units. The UV-vis spectra confirmed a decrease in the direct and indirect band gap values with increase in MgO content. Optical parametersnamely refractive index, electronic polarizability, reflection loss and dielectric constant were also calculated and found to be in good correlation with other studies. Following gamma rays irradiation with different doses, TL glow curves of prepared glasses were analysed. Deconvolution of TL glow curves was done using glow curve convolution deconvolution (GCCD) function and trapping parameters of isolated peaks viz. activation energy and frequency factor have been determined.

Keywords


Borate Glasses, X Ray Diffraction, FTIR Spectroscopy, Thermoluminescence.

References