Open Access Open Access  Restricted Access Subscription Access

Multi-Functional Behaviour of Eu2O3 Embedded 3D Mesoporous Silica Template KIT-6


Affiliations
1 PG Department of Physics, Magadh University, Bodh Gaya 824 234, Bihar, India
2 PG Department of Chemistry, Magadh University, Bodh Gaya 824 234, Bihar, India
3 Department of Physics, Gautam Buddha Mahila College, Gaya 823 001, Bihar, India
 

Rare-earth (RE) oxide embedded ordered mesoporous silica have been successfully prepared via a solution impregnation method. The structure and physical property of the nanocomposites (NCs) were studied by low-angle X-ray diffraction, Transmission Electron Microscopy (TEM), Photoluminescence (PL) and magnetic measurement. The NCs exhibited the room temperature 5D07Fj transition emission due to the presence of Eu3+ ions. Also the NC system showed a room temperature weak ferromagnetism due to the large oxygen vacancy present in the system. Photoluminescence, magnetic property and large surface area, make these NCs ideal multi-functional materials, which will have potential applications in the field of bio-medicine and drug-delivery. These kinds of nanocomposites are promising candidates for fabrication of various environment friendly smart devices.

Keywords

Nanocomposites, Mesoporous Materials, Rare Earth Oxide, Magnetic Property.
User
Notifications
Font Size

  • Kim J, Lee J E, Lee J, Ho Yu J, Kim B C, An K, Hwang Y, Shin C H, Park J G, Kim J & Hyeon T, J Am Chem Soc, 128 (2006) 688.
  • Wu Z, Yu K, Zhang S & Xie Y, J Phys Chem C, 114 (2010) 18753.
  • Mukherjee K & Majumder S B, J Appl Phys, 106 (2009) 064912.
  • Banerjee S, Hajra P, Bhaumik A & Chakravorty D, Chem Phys Lett, 541 (2012) 96.
  • Perkas N, Wang Y, Koltypin Y, Gedanken A & Chandrasekaran S, Chem Commun, (2001) 988.
  • Banerjee S, Datta A, Bhaumik A & Chakravorty D, Bull Mater Sci, 35 (2012) 919.
  • Zhang X, Wang F, Huang H, Li H, Han X, Liu Y& Kang Z, Nanoscale, 5 (2013) 2274.
  • Huang S, Fan Y, Cheng Z, Kong D, Yang P, Quan Z, Zhang C & Lin J, J Phys Chem C, 113 (2009) 1775.
  • Hao W, Xi Y, Hu J, Wang T, Du Y & Wang X L, J Appl Phys, 111 (2012 ) 07B301.
  • Zhang K, Amponsah O, Arslan M, Holloway T, Cao W & Pradhan A K, J Appl Phys, 111 (2012) 07B525.
  • Xu A W, Cao Y & Liu H Q, J Catal, 207 (2002) 151.
  • Yang H P, Zhang D S, Shi L Y & Fang J H, Acta Mater, 56 (2008) 955.
  • Fan W Q, Song S Y, Feng, Lei Y Q, Zheng G L & Zhang H J, J Phys Chem C, 112 (2008) 19939.
  • Silversmith A J, Boye D M, Anderman R E & Brewer K S, J Lumin, 94 (2001) 275.
  • Eilers H & Tissue B M, Chem Phys Lett, 251 (1996) 74.
  • Wakefield G, Keron H A, Dobson P J & Hutchson J L, J Colloid Interface Sci, 215 (1999) 179.
  • Patra A, Sominska E, Ramesh S, Koltypin Y & Zhong Z, J Phys Chem B, 103 (1999) 3361.
  • Mohanty P & Ram S, J Mater Chem, 13 (2003) 3021.
  • Reisfeld R, Zigansky E & Gaft M, Mol Phys, 102 (2004) 1319.
  • Babu S, Schulte A & Seal S, Appl Phys Lett, 92 (2008) 123112.
  • Rubinger C P L, Costa L C, Macatrão M, Peres M, Monteiro T, Costa F M, Franco N, Alves E, Saggioro B Z, Andreeta M R B & Hernandes A C, Appl Phys Lett, 92 (2008) 252904.
  • Maheswari D U, Kumar J S, Moorthy L R, Jang K & Jayasimhadri M, Physica B, 403 (2008) 1690.
  • Liu X & Lin J, J Appl Phys, 100 (2006) 124306.
  • Wong K L, Law G L, Murphy M B, Tanner P A, Wong W T, Lam P K S & Lam M H W, Inorg Chem, 47 (2008) 5190.
  • Gai S, Yang P, Wang D, Li C, Niu N, He F, Zhang M & Lin J, RSC Adv, 2 (2012) 3281.
  • Zeng C H, Zheng K, Lou K L, Meng X T, Yan Z Q, Ye Z N, Su R R & Zhong S, Electrochimica Acta, 165 (2015) 396.
  • Kaur M & Verma N K, J Mater Sci: Mater Electron, 24 (2013) 1121.
  • Xu Z, Cao Y, Li C, Ma P, Zhai X, Huang S, Kang X, Shang M, Yang D, Dai Y & Lin J, J Mater Chem, 21 (2011) 3686.
  • Tian G, Gu Z, Liu X, Zhou L, Yin W, Yan L, Jin S, Ren W, Xing G, Li S & Zhao Y, J Phys Chem C, 115 (2011) 23790.
  • Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z & Lin J, Biomaterials, 30 (2009) 4786.
  • Zhang Z, Zuo F & Feng P, J Mater Chem, 20 (2010) 2206.
  • Vaishnavi T S, Haridoss P & Vijayan C, Mater Lett, 62 (2008) 1649.
  • Jayaraj M K &Vallabhan C P G, Thin Solid Films, 177 (1989) 59.
  • Kodama R H, Makhlouf S A & Berkowitz A E, Phys Rev Lett, 79 (1997) 1393.
  • Zhang Y C, Tang J Y & Hu X Y, J Alloys Compd, 462 (2008) 24.
  • Takahashi M, Phys Rev Lett, 58 (1987) 168.
  • Childress J R, Chien C L & Nathan M, Appl Phys Lett, 56 (1990) 95.

Abstract Views: 56

PDF Views: 66




  • Multi-Functional Behaviour of Eu2O3 Embedded 3D Mesoporous Silica Template KIT-6

Abstract Views: 56  |  PDF Views: 66

Authors

Sweta
PG Department of Physics, Magadh University, Bodh Gaya 824 234, Bihar, India
Partha Pratim Das
PG Department of Chemistry, Magadh University, Bodh Gaya 824 234, Bihar, India
Shilpi Banerjee
Department of Physics, Gautam Buddha Mahila College, Gaya 823 001, Bihar, India

Abstract


Rare-earth (RE) oxide embedded ordered mesoporous silica have been successfully prepared via a solution impregnation method. The structure and physical property of the nanocomposites (NCs) were studied by low-angle X-ray diffraction, Transmission Electron Microscopy (TEM), Photoluminescence (PL) and magnetic measurement. The NCs exhibited the room temperature 5D07Fj transition emission due to the presence of Eu3+ ions. Also the NC system showed a room temperature weak ferromagnetism due to the large oxygen vacancy present in the system. Photoluminescence, magnetic property and large surface area, make these NCs ideal multi-functional materials, which will have potential applications in the field of bio-medicine and drug-delivery. These kinds of nanocomposites are promising candidates for fabrication of various environment friendly smart devices.

Keywords


Nanocomposites, Mesoporous Materials, Rare Earth Oxide, Magnetic Property.

References