Open Access Open Access  Restricted Access Subscription Access

Conduction Mechanism and Dielectric Properties in Polyaniline/Titanium Dioxide Composites


Affiliations
1 Department of Basic and Applied Sciences, Bhagat Phool Singh Mahilla Vishwavidyalaya, Khanpur Kalan, Sonipat, Haryana- 131 305, India
2 Department of Physics, Guru Jambheshwar University of Science and Technology, Hisar, Haryana-125 011, India
3 Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana- 124 001, India
4 CSIR- National Physical Laboratory, New Delhi-110 012, India
5 Department of Basic and Applied Science, National Institute of Technology, Arunachal Pradesh, Jote, 791 113, India
 

The conductivity and dielectric properties of polyaniline (PANI) and PANI/TiO2 composites have been studied over a temperature range (313-393 K) and frequency range (25 Hz- 50 MHz). The nature of temperature and frequency-dependent conductivity can be explained by Jonscher’s universal power law and used to find the related parameters such as frequency exponent (s), dc conductivity (σdc), and crossover frequency (ωH). Besides, the frequency exponent analysis through a distinct model suggests that the conduction occurred through small polaron tunnelling in all compositions and at different temperatures. On the other hand, the enthalpy of migration (Hm), dissociation enthalpy of cation from its indigenous location alongside a compensating center (Hf), and the activation energy were also calculated using the Arrhenius relation. The temperature-dependent dc conductivity was examined in the framework of the theoretical model; Mott’s variable range hopping model (VRH) and experimental results were in good agreement with the 3-dimensional VRH model. As a function of temperature, dielectric constants (ε and ε) increase while decreasing with an increasing dopant. Being such a high dielectric constant value, these composites can be used as frequency converters, modulators, and dielectric amplifiers.

Keywords

Polyaniline, Conductivity, Activation Energy, Dielectric Constants.
User
Notifications
Font Size

  • Nakajima T & Kawogoc T, Synth Met, 28 (1989) 544.
  • Kumar G, Shivashanmugam A, Muniyandi N, Dhawan S K & Trivedi D C, Synth Met, 50 (1996) 279.
  • Chano S & Wrington M S, J Am Chem Soc, 109 (1996) 6627.
  • Kelly F M , Meunier L, Cochrane C & Koncar V, Displays, 34 (2013) 1.
  • Dhawan S K & Trivedi D C, J Appl Electrochem, 22 (1992) 565.
  • Sathiyanarayanan S, Dhawan S K, Trivedi D C & Balakrishanan K, Corros Sci, 33 (1992) 1831.
  • Sathiyanarayanan S, Balakrishanan K, Dhawan S K & Trivedi D C, Electrochim Acta, 39 (1994) 831.
  • Arafa I M, El-Ghanem H M & Bani-Doumi K A, J Inorg Organomet Polym, 23 (2013) 365.
  • Ayad M M, Salahuddin N A, Minisy I M & Amer W A, Sens Actuat B-Chem, 202 (2014) 144.
  • Kar P & Choudhury A, Sens Actuat B-Chem, 183 (2013) 25.
  • Ahuja T, Mir I A, Kumar D & Rajesh, Biomaterials, 28 (2007) 791.
  • Bhattacharya A, Ganguly K M, De A & Sarkar S, Mater Res Bull, 31 (1996) 527.
  • Galembeck A & Oswaldo L A, Synth Met, 84 (1997) 151.
  • Harreld J H, Dunn B & Nazar L F, Int J Inorg Mater, 1 (1999) 135.
  • Shi-Jain S & Kuramoto N, Synth Met, 114 (2000) 147.
  • Goyal S L, Sharma S, Jain D & Kishore N, Indian J Pure Appl Phys, 53 (2015) 456.
  • Chen W, Xingwei L, Gi X, Zhaoquang W & Wenquing Z, Appl Surf Sci, 218 (2003) 216.
  • De A, Ajay D & Susanta L, Synth Met, 144 (2004) 303.
  • Saeed M, Shakoor A & Ahmad E, J Mater Sci, 24 (2013) 3536.
  • Jundale D M, Navale S T, Khuspe G D, Dalavi D S, Patil P S & Patil V B, J Mater Sci, 24 (2013) 3526.
  • Asha, Goyal S L, Jain D & Kishore N, J Chem Pharm Res, 6 (2014) 105.
  • Manjunath S, Koppalkar R, Kumar A, Revanasiddappa M & Ambika P M V N, Ferroelectric Lett, 35 (2008) 36.
  • Machappa T & Ambika P M V N, Physica B, 404 (2009) 4168,
  • Koppalkar R, Kumar A, Parveen A, Badiger G R & Ambika P M V N, Physica B, 404 (2009) 1664.
  • Patil R, Roy A S, Koppalkar R, Kumar A, Jadhav K M & Ekhelikar S, Composites: Part B, 43 (2012) 3406.
  • Harun M H, Saion E, Kassim A, Hussain M Y, Mustafa I S & Omer M A A, Malaysian Polym J, 3 (2008) 24.
  • Ozkazanc E, Zor S & Ozkazanc H, J Macromol Sci Phys, 51 (2012) 2122.
  • Dey A, De S, De A & De S K, Nanotechnology, 15 (2004) 1277.
  • Pradhan D K, Choudhary R N P & Samantaray B K, Mater Chem Phys, 115 (2009) 557.
  • Gupta K, Chakraborty G, Jana P C & Meikap A K, Solid State Commun, 151 (2011) 573.
  • Asha, Goyal S L, Kumar D, Kumar S & Kishore N, Indian J Pure Appl Phys, 52 (2014) 341.
  • Sarkar A, Gosh P, Meikap A K, Chattopadhyay S K, Chatterjee S K, Chowdhury P, Roy K & Saha B, J Appl Polym Sci, 108 (2008) 2312.
  • De S, Dey A & De S K, Eur Phys J B, 46 (2005) 355.
  • Ozkazanc E, Ozkazanc H, Zor S & Abaci U, Polym Eng Sci, 51 (2011) 617.
  • De S, De A, Das A & De S K, Mater Chem Phys, 91 (2005) 477.
  • Papathanassiou A N, Sakellis I & Grammatikakis J, Appl Phys Lett, 91 (2007) 122911.
  • Elliott S R, Adv Phys, 36 (1987) 135.
  • Punia R, Kundu R S, Dult M, Murugavel S & Kishore N, J Appl Phys, 112 (2012)
  • Gosh M, Barman A, Meikap A K, De S K & Chatterjee S, Phys Lett A, 260 (1999) 138.
  • Mott N F, Phil Mag, 19 (1969) 835.
  • Patil S D, Raghavendra S C, Revansiddappa M, Narsimha P & Ambika P M V N, Bull Mater Sci, 30 (2007) 89.
  • Ozkazanc E, Zor S, Ozkazanc H, Guney H Y & Abaci U, Mater Chem Phys, 133 (2012) 356.
  • Bisquert J, Garcia-Belmonte G, Bueno P, Longo E & Bulhoes L O S, J Electro Anal Chem, 452 (1998) 229.
  • Sarkar A, Ghosh P, Meikap A K, Chattopadhyay S K, Chatterjee S K & Gosh M, Solid State Commun, 143 (2007) 358.
  • Yakuphanoglu F & Senkal B F, Polym Adv Technol, 19 (2008) 1876.
  • Soares B G, Leyva M E, Barra G M O & Khastgir D, Eur Polym J, 42 (2006) 676.
  • Lee H T, Leo C S & Chen S A, Macromol Chem, 194 (1993) 2433.
  • Ray D K, Himanshu A K & Sinha T P, Indian J Pure Appl Phys, 45 (2007) 692.
  • Tabellout M, Fatyeyeva K, Baillif P Y, Bardeau J F & Pud A A, J Non Cryst Solids, 351 (2005) 2835.
  • Kuleznev V N & Shershnev V A, Chem Phys Polym, (Mir Publishers, Moscow), 1990.1 Nakajima T & Kawogoc T, Synth Met, 28 (1989) 544.
  • Kumar G, Shivashanmugam A, Muniyandi N, Dhawan S K & Trivedi D C, Synth Met, 50 (1996) 279.
  • Chano S & Wrington M S, J Am Chem Soc, 109 (1996) 6627.
  • Kelly F M , Meunier L, Cochrane C & Koncar V, Displays, 34 (2013) 1.
  • Dhawan S K & Trivedi D C, J Appl Electrochem, 22 (1992) 565.
  • Sathiyanarayanan S, Dhawan S K, Trivedi D C & Balakrishanan K, Corros Sci, 33 (1992) 1831.
  • Sathiyanarayanan S, Balakrishanan K, Dhawan S K & Trivedi D C, Electrochim Acta, 39 (1994) 831.
  • Arafa I M, El-Ghanem H M & Bani-Doumi K A, J Inorg Organomet Polym, 23 (2013) 365.
  • Ayad M M, Salahuddin N A, Minisy I M & Amer W A, Sens Actuat B-Chem, 202 (2014) 144.
  • Kar P & Choudhury A, Sens Actuat B-Chem, 183 (2013) 25.
  • Ahuja T, Mir I A, Kumar D & Rajesh, Biomaterials, 28 (2007) 791.
  • Bhattacharya A, Ganguly K M, De A & Sarkar S, Mater Res Bull, 31 (1996) 527.
  • Galembeck A & Oswaldo L A, Synth Met, 84 (1997) 151.
  • Harreld J H, Dunn B & Nazar L F, Int J Inorg Mater, 1 (1999) 135.
  • Shi-Jain S & Kuramoto N, Synth Met, 114 (2000) 147.
  • Goyal S L, Sharma S, Jain D & Kishore N, Indian J Pure Appl Phys, 53 (2015) 456.
  • Chen W, Xingwei L, Gi X, Zhaoquang W & Wenquing Z, Appl Surf Sci, 218 (2003) 216.
  • De A, Ajay D & Susanta L, Synth Met, 144 (2004) 303.
  • Saeed M, Shakoor A & Ahmad E, J Mater Sci, 24 (2013) 3536.
  • Jundale D M, Navale S T, Khuspe G D, Dalavi D S, Patil P S & Patil V B, J Mater Sci, 24 (2013) 3526.
  • Asha, Goyal S L, Jain D & Kishore N, J Chem Pharm Res, 6 (2014) 105.
  • Manjunath S, Koppalkar R, Kumar A, Revanasiddappa M & Ambika P M V N, Ferroelectric Lett, 35 (2008) 36.
  • Machappa T & Ambika P M V N, Physica B, 404 (2009) 4168,
  • Koppalkar R, Kumar A, Parveen A, Badiger G R & Ambika P M V N, Physica B, 404 (2009) 1664.
  • Patil R, Roy A S, Koppalkar R, Kumar A, Jadhav K M & Ekhelikar S, Composites: Part B, 43 (2012) 3406.
  • Harun M H, Saion E, Kassim A, Hussain M Y, Mustafa I S & Omer M A A, Malaysian Polym J, 3 (2008) 24.
  • Ozkazanc E, Zor S & Ozkazanc H, J Macromol Sci Phys, 51 (2012) 2122.
  • Dey A, De S, De A & De S K, Nanotechnology, 15 (2004) 1277.
  • Pradhan D K, Choudhary R N P & Samantaray B K, Mater Chem Phys, 115 (2009) 557.
  • Gupta K, Chakraborty G, Jana P C & Meikap A K, Solid State Commun, 151 (2011) 573.
  • Asha, Goyal S L, Kumar D, Kumar S & Kishore N, Indian J Pure Appl Phys, 52 (2014) 341.
  • Sarkar A, Gosh P, Meikap A K, Chattopadhyay S K, Chatterjee S K, Chowdhury P, Roy K & Saha B, J Appl Polym Sci, 108 (2008) 2312.
  • De S, Dey A & De S K, Eur Phys J B, 46 (2005) 355.
  • Ozkazanc E, Ozkazanc H, Zor S & Abaci U, Polym Eng Sci, 51 (2011) 617.
  • De S, De A, Das A & De S K, Mater Chem Phys, 91 (2005) 477.
  • Papathanassiou A N, Sakellis I & Grammatikakis J, Appl Phys Lett, 91 (2007) 122911.
  • Elliott S R, Adv Phys, 36 (1987) 135.
  • Punia R, Kundu R S, Dult M, Murugavel S & Kishore N, J Appl Phys, 112 (2012)
  • Gosh M, Barman A, Meikap A K, De S K & Chatterjee S, Phys Lett A, 260 (1999) 138.
  • Mott N F, Phil Mag, 19 (1969) 835.
  • Patil S D, Raghavendra S C, Revansiddappa M, Narsimha P & Ambika P M V N, Bull Mater Sci, 30 (2007) 89.
  • Ozkazanc E, Zor S, Ozkazanc H, Guney H Y & Abaci U, Mater Chem Phys, 133 (2012) 356.
  • Bisquert J, Garcia-Belmonte G, Bueno P, Longo E & Bulhoes L O S, J Electro Anal Chem, 452 (1998) 229.
  • Sarkar A, Ghosh P, Meikap A K, Chattopadhyay S K, Chatterjee S K & Gosh M, Solid State Commun, 143 (2007) 358.
  • Yakuphanoglu F & Senkal B F, Polym Adv Technol, 19 (2008) 1876.
  • Soares B G, Leyva M E, Barra G M O & Khastgir D, Eur Polym J, 42 (2006) 676.
  • Lee H T, Leo C S & Chen S A, Macromol Chem, 194 (1993) 2433.
  • Ray D K, Himanshu A K & Sinha T P, Indian J Pure Appl Phys, 45 (2007) 692.
  • Tabellout M, Fatyeyeva K, Baillif P Y, Bardeau J F & Pud A A, J Non Cryst Solids, 351 (2005) 2835.
  • Kuleznev V N & Shershnev V A, Chem Phys Polym, (Mir Publishers, Moscow), 1990.

Abstract Views: 71

PDF Views: 64




  • Conduction Mechanism and Dielectric Properties in Polyaniline/Titanium Dioxide Composites

Abstract Views: 71  |  PDF Views: 64

Authors

Asha
Department of Basic and Applied Sciences, Bhagat Phool Singh Mahilla Vishwavidyalaya, Khanpur Kalan, Sonipat, Haryana- 131 305, India
Sneh Lata Goyal
Department of Physics, Guru Jambheshwar University of Science and Technology, Hisar, Haryana-125 011, India
Rachna Dhankhar
Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana- 124 001, India
Rahul Sharma
CSIR- National Physical Laboratory, New Delhi-110 012, India
Arvind Sharma
Department of Basic and Applied Science, National Institute of Technology, Arunachal Pradesh, Jote, 791 113, India

Abstract


The conductivity and dielectric properties of polyaniline (PANI) and PANI/TiO2 composites have been studied over a temperature range (313-393 K) and frequency range (25 Hz- 50 MHz). The nature of temperature and frequency-dependent conductivity can be explained by Jonscher’s universal power law and used to find the related parameters such as frequency exponent (s), dc conductivity (σdc), and crossover frequency (ωH). Besides, the frequency exponent analysis through a distinct model suggests that the conduction occurred through small polaron tunnelling in all compositions and at different temperatures. On the other hand, the enthalpy of migration (Hm), dissociation enthalpy of cation from its indigenous location alongside a compensating center (Hf), and the activation energy were also calculated using the Arrhenius relation. The temperature-dependent dc conductivity was examined in the framework of the theoretical model; Mott’s variable range hopping model (VRH) and experimental results were in good agreement with the 3-dimensional VRH model. As a function of temperature, dielectric constants (ε and ε) increase while decreasing with an increasing dopant. Being such a high dielectric constant value, these composites can be used as frequency converters, modulators, and dielectric amplifiers.

Keywords


Polyaniline, Conductivity, Activation Energy, Dielectric Constants.

References