Open Access Open Access  Restricted Access Subscription Access

Catechins and Theaflavins: An Overview on Therapeutic Application


Affiliations
1 Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat, India
2 Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Petlad, Anand, Gujarat - 388421, India
 

Flavonoids are a sort of natural substance which are basically plant secondary metabolites having a polyphenolic structure present in a wide range of food products. Flavonoids have become a vital constituent in nutraceutical, pharmacological, therapeutic, and cosmetic fields. This is owing to their capability to regulate essential cellular enzyme activity along with anti-cancer, anti-oxidative, anti-mutagenic, and anti-inflammatory effects. Through the revelation of a minimal cardiovascular death rate and the deterrence of CHD, research on flavonoids has gotten a boost. The functional mechanisms of flavonoids are still not completely known. Molecular docking and bioinformatics information are also been used to forecast potential flavonoid functions. Flavonoids are divided into several categories. Catechins and Theaflavins (TF’s) are two types of flavonoids that have been discussed in this review. ROS scavenging property of tea catechins and polyphenols have been demonstrated in vitro, and they may also serve as indirect antioxidants via their influence on transcription features and enzyme actions. There are a number of antioxidant polyphenols called collectively as “theaflavins” that are produced during the enzymatic oxidation (sometimes referred to mistakenly as “fermentation”) of black tea leaves by flavan-3-ol condensation Theaflavin-3-gallate, theaflavin-3’-gallate, and theaflavin-3-3’-digallate are the major theaflavins.


Keywords

Catechins, Flavonoids, Plants, Secondary Metabolites, Theaflavins.
Font Size

User

Notifications
JOURNAL COVERS
  

  • Banjarnahor SD, Artanti N. Antioxidant properties of fla- vonoids. Med J Indonesia. 2014; 23(4):239-44. https://doi. org/10.13181/mji.v23i4.1015
  • Castañeda-Ovando A, de Lourdes Pacheco-Hernández M, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: A review. Food Chem. 2009; 113(4):859-71. https://doi.org/10.1016/j.food- chem.2008.09.001
  • Lee YK, Yuk DY, Lee JW, Lee SY, Ha TY, Oh KW, et al. (−)-Epigallocatechin-3-gallate prevents lipopolysaccha- ride-induced elevation of beta-amyloid generation and memory deficiency. Brain Res. 2009; 1250:164-74. https:// doi.org/10.1016/j.brainres.2008.10.012.PMid:18992719
  • Metodiewa D, Kochman A, Karolczak S. Evidence for anti- radical and antioxidant properties of four biologically active N, N‐Diethylaminoethyl ethers of flavaone oximes: A com- parison with natural polyphenolic flavonoid rutin action. Biochem Mol Biol Int. 1997; 41(5):1067-75. https://doi. org/10.1080/15216549700202141. PMid:9137839
  • Hayashi T, Sawa K, Kawasaki M, Arisawa M, Shimizu M, Morita N. Inhibition of cow’s milk xanthine oxidase by flavonoids. J Nat Prod. 1988; 51(2):345-8. https://doi. org/10.1021/np50056a030. PMid:3379415
  • Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell. 2000; 6(4):909-19. https://doi.org/10.1016/S1097- 2765(05)00089-4
  • Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 2002; 96(2-3):67-202. https://doi.org/10.1016/S0163-7258(02)00298-X
  • Dewick PM. The shikimate pathway: aromatic amino acids and phenylpropanoids. Med Nat Prod. 2009; 137:86. https:// doi.org/10.1002/9780470742761.ch4
  • Griesbach R. Biochemistry and genetics of flower color. Plant Breed Rev. 2005; 25:89-114. https://doi. org/10.1002/9780470650301.ch4
  • Takahashi A, Ohnishi T. The significance of the study about the biological effects of solar ultraviolet radiation using the exposed facility on the international space station. Biol Sci Space. 2004; 18:255-60. https://doi.org/10.2187/bss.18.255. PMid:15858393
  • Samanta A, Das G, Das S. Roles of flavonoids in plants. Int J Pharm Sci Tech. 2011; 6:12-35.
  • Jorgensen R. Co-suppression, flower color patterns, and metastable gene expression states. Sci. 1995; 268:686- 91. https://doi.org/10.1126/science.268.5211.686. PMid:17832380
  • Dixon R, Pasinetti G. Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol. 2010; 154:453-7. https://doi.org/10.1104/pp.110.161430. PMid:20921162. PMCid:PMC2948995
  • Kumar S, Pandey AK. Chemistry and biological activi- ties of flavonoids: an overview. Sci World J. 2013. https://doi.org/10.1155/2013/162750. PMid:24470791. PMCid:PMC3891543
  • Panche A, Chandra S, Ad DI, Harke S. Alzheimer’s and cur- rent therapeutics: A review. Asian J Pharm Clin Res. 2015; 8(3):14-9.
  • Sen AK, Sen DB, Maheshwari RA. Extraction, Isolation, and Quantitative Determination of Flavonoids by HPLC. In Saikat Sen, Raja Chakraborty, editor. Herbal Medicine in India. Singapore. Springer Nature Singapore Pte Ltd.; 2020: pp. 303-36. https://doi.org/10.1007/978-981-13-7248-3_21
  • Turner BL, Harborne JB. Plant chemosystematics. Academic Press; 1984.
  • Clifford AH, Cuppett SL. Review: Anthocyanins- nature, occurrence and dietary burden. J Sci Food Agric. 2000; 80:1063-72. https://doi.org/10.1002/(SICI)1097- 0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q
  • Cook NC, Samman S. Review: Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem. 1996; 7:66-76. https://doi.org/10.1016/0955- 2863(95)00168-9
  • Bravo L. Polyphenols: Chemistry, dietary sources, metab- olism, and nutritional significance. Nutr Rev. 1988; 56:317-33. https://doi.org/10.1111/j.1753-4887.1998. tb01670.x. PMid:9838798
  • Aherne SA, Obrien NM. Dietary flavonols: chemistry, food content and metabolism. Nutr. 2002; 18:75-81. https://doi. org/10.1016/S0899-9007(01)00695-5
  • Peterson J, Dwyer J. Flavonoids: Dietary occurrence and biochemical activity. Nutr Res. 1998; 18:1995-2018. https:// doi.org/10.1016/S0271-5317(98)00169-9
  • Tsuchiya, H. Stereospecificity in membrane effects of cat- echins. Chem Biol Interact. 2001; 134:41-54. https://doi. org/10.1016/S0009-2797(00)00308-2
  • Bernatoniene J, Kopustinskiene DM. The role of cat- echins in cellular responses to oxidative stress. Mol. 2018; 23(4):965. https://doi.org/10.3390/molecules23040965. PMid:29677167. PMCid:PMC6017297
  • Bae J, Kim N, Shin Y, Kim SY, Kim YJ. Activity of cat- echins and their applications. Biomed Dermatol. 2020; 4(1):1. https://doi.org/10.1186/s41702-020-0057-8. PMCid:PMC7149075
  • Isemura M. Catechin in human health and disease. Mol. 2019; 24:528. https://doi.org/10.3390/molecules24030528. PMid:30717121. PMCid:PMC6384718
  • Spizzirri UG, Iemma F, Puoci F, Cirillo G, Curcio M, Parisi OI, et al. Synthesis of antioxidant polymers by grafting of gallic acid and catechin on gelatin. Biomacromolecules. 2009; 10:1923-30. https://doi.org/10.1021/bm900325t. PMid:19413362
  • D’Urso G, Pizza C, Piacente S, Montoro P. Combination of LC-MS based metabolomics and antioxidant activity for evaluation of bioactive compounds in Fragaria vesca leaves from Italy. J Pharm Biomed Anal. 2018; 150:233-40. https:// doi.org/10.1016/j.jpba.2017.12.005. PMid:29253779
  • Nadim M, Auriol D, Lamerant-FayeL N, Lefèvre F, Dubanet L, Redziniak G, et al. Improvement of polyphenol properties upon glucosylation in a UV-induced skin cell ageing model. Int J Cosmet Sci. 2014; 36:579-87. https://doi.org/10.1111/ ics.12159. PMid:25196711
  • Feng HL, Tian L, Chai WM, Chen XX, Shi Y, Gao Y-S, et al. Isolation and purification of condensed tan- nins from flamboyant tree and their antioxidant and antityrosinase activities. Appl Biochem Biotechnol. 2014; 173:179-92. https://doi.org/10.1007/s12010-014-0828-z. PMid:24671565
  • Feng B, Fang Y, Wei SM. Effect and mechanism of epi- gallocatechin-3-gallate (EGCG) against the hydrogen peroxide-induced oxidative damage in human dermal fibroblasts. J Cosmet Sci. 2013; 64(1):35-44.
  • Zhong Y, Shahidi F. Lipophilized epigallocatechin gallate (EGCG) derivatives as novel antioxidants. J Agric Food Chem. 2011; 59:6526-33. https://doi.org/10.1021/jf201050j. PMid:21526762
  • Shoko T, Maharaj VJ, Naidoo D, Tselanyane M, Nthambeleni R, Khorombi E, et al. Anti-aging potential of extracts from Sclerocarya birrea (A. Rich.) Hochst and its chemical profil- ing by UPLC-Q-TOF-MS. BMC Complement Altern Med. 2018; 18(1):1-4. https://doi.org/10.1186/s12906-018-2112- 1. PMid:29415712. PMCid:PMC5804067
  • Lima EBC, de Sousa CNS, Vasconcelos GS, Meneses LN, YF e SP, Ximenes NC, et al. Antidepressant, antioxidant and neurotrophic properties of the standardized extract of Cocos nucifera husk fiber in mice. J Nat Med. 2016; 70:510-21. https://doi.org/10.1007/s11418-016-0970-8. PMid:26857134
  • Xie H, Li X, Ren Z, Qiu W, Chen J, Jiang Q, Chen B, Chen D. Antioxidant and cytoprotective effects of Tibetan tea and its phenolic components. Mol. 2018; 23(2):179. https:// doi.org/10.3390/molecules23020179. PMid:29364183. PMCid:PMC6017439
  • Saeki K, Hayakawa S, Nakano S, Ito S, Oishi Y, Suzuki Y, Isemura M. In vitro and in silico studies of the molecu- lar interactions of epigallocatechin-3-O-gallate (EGCG) with proteins that explain the health benefits of green tea. Mol. 2018; 23(6):1295. https://doi.org/10.3390/mol- ecules23061295. PMid:29843451. PMCid:PMC6099932
  • de Oliveira CA, Hensel A, Mello JCP, Pinha AB, Panizzon GP, Lechtenberg M, et al. Flavan-3-ols and proanthocyani- dins from Limonium brasiliense inhibit the adhesion of Porphyromonas gingivalis to epithelial host cells by interac- tion with gingipains. Fitoterapia. 2017; 118:87-93. https:// doi.org/10.1016/j.fitote.2017.03.002. PMid:28288871
  • Aoshima H, Kokubo K, Shirakawa S, Ito M, Yamana S, Oshima T. Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci. 2009; 14:69-72. https://doi.org/10.4265/bio.14.69. PMid:19579658
  • Goyal A, Bhat M, Sharma M, Garg M, Khairwa A, Garg R. Effect of green tea mouth rinse on Streptococcus mutans in plaque and saliva in children: An in vivo study. J Indian Soc Pedod Prev Dent. 2017; 35:41-6. https://doi. org/10.4103/0970-4388.199227. PMid:28139481
  • Ide K, Matsuoka N, Yamada H, Furushima D, Kawakami K. Effects of tea catechins on Alzheimer’s disease: Recent updates and perspectives. Mol. 2018; 23(9):2357. https:// doi.org/10.3390/molecules23092357. PMid:30223480. PMCid:PMC6225145
  • Pervin M, Unno K, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Beneficial effects of green tea catechins on neurodegenerative diseases. Mol. 2018; 23(6):1297. https:// doi.org/10.3390/molecules23061297. PMid:29843466. PMCid:PMC6099654
  • Zhang W, Yang Y, Lv T, Fan Z, Xu Y, Yin J, et al. Sucrose esters improve the colloidal stability of nanoethosomal sus- pensions of (-)-epigallocatechin gallate for enhancing the effectiveness against UVB-induced skin damage. J Biomed Mater Res B Appl Biomater. 2016; 105:2416-25. https://doi. org/10.1002/jbm.b.33785. PMid:27618624
  • Yoshino S, Mitoma T, Tsuruta K, Todo H, Sugibayashi K. Effect of emulsification on the skin permeation and UV protection of catechin. Pharm Dev Technol. 2013; 19:395- 400. https://doi.org/10.3109/10837450.2013.788512. PMid:23639253
  • Huang CC, Wu WB, Fang JY, Chiang HS, Chen SK, Chen BH, et al. (-)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced dam- age in HaCaT keratinocytes. Mol. 2007; 12(8):1845-58. https://doi.org/10.3390/12081845. PMid:17960092. PMCid:PMC6149107
  • Martincigh BS, Ollengo MA. The Photostabilizing effect of grape seed extract on three common sunscreen absorb- ers. Photochem Photobiol. 2016; 92:870-84. https://doi. org/10.1111/php.12652. PMid:27759892
  • Parisi OI, Puoci F, Iemma F, Curcio M, Cirillo G, Spizzirri UG, et al. Flavonoids preservation and release by meth- acrylic acid-grafted (N-vinyl-pyrrolidone). Pharm Dev Technol. 2012; 18:1058-65. https://doi.org/10.3109/108374 50.2012.680595. PMid:22524466
  • Kim SS, Hyun CG, Choi YH, Lee NH. Tyrosinase inhibi- tory activities of the compounds isolated from Neolitsea aciculata (Blume) Koidz. J Enzyme Inhib Med Chem. 2012; 28:685-9. https://doi.org/10.3109/14756366.2012.670806. PMid:22468750
  • Kumar M, Chandel M, Kaur P, Pandit K, Kaur V, Kaur S, et al. Chemical composition and inhibitory effects of water extract of Henna leaves on reactive oxygen species, DNA scission and proliferation of cancer cells. Excli J. 2016; 15:842-57.
  • Cheng HY, Yang CM, Lin TC, Shieh DE, Lin CC. ent- Epiafzelechin-(4α→8)-epiafzelechin extracted from Cassia javanica inhibits herpes simplex virus type 2 replication. J Med Microbiol. 2006; 55(2):201-6. https://doi.org/10.1099/ jmm.0.46110-0. PMid:16434713
  • Furushima D, Ide K, Yamada H. Effect of tea catechins on influenza infection and the common cold with a focus on epidemiological/clinical studies. Mol. 2018; 23. https:// doi.org/10.3390/molecules23071795. PMid:30037024. PMCid:PMC6100025
  • Rothenberg DO, Zhou C, Zhang L. A Review on the Weight-Loss Effects of oxidized tea polyphenols. Mol. 2018; 23. https://doi.org/10.3390/molecules23051176. PMid:29758009. PMCid:PMC6099746
  • Fatima M, Kesharwani RK, Misra K, Rizvi SI. Protective effect of theaflavin on erythrocytes subjected to in vitro oxidative stress. Bioche Res Int. 2013. https://doi. org/10.1155/2013/649759. PMid:24455262. PMCid: PMC3880739
  • Subramanian N, Venkatesh P, Ganguli S, Sinkar VP. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins. J Agric Food Chem. 1999; 47(7):2571- 8. https://doi.org/10.1021/jf981042y. PMid:10552528
  • Tanaka T, Mine C, Inoue K, Matsuda M, Kouno I. Synthesis of theaflavin from epicatechin and epigallocatechin by plant homogenates and role of epicatechin quinone in the syn- thesis and degradation of theaflavin. J Agric Food Chem. 2002; 50(7):2142-8. https://doi.org/10.1021/jf011301a. PMid:11902970
  • Hodgson JM. Tea flavonoids and cardiovascular disease. Asia Pac J Clin Nutr. 2008; 17(1):288-90.
  • Gao Y, Yin J, Tu Y, Chen YC. Theaflavin-3, 3′-digallate suppresses human ovarian carcinoma OVCAR-3 cells by regulating the checkpoint kinase 2 and p27 kip1 path- ways. Mol. 2019; 24(4):673. https://doi.org/10.3390/ molecules24040673. PMid:30769778. PMCid:PMC6412557
  • Shah U, Patel S, Patel M, Jain N, Pandey N, Chauhan A, et al. In Vitro Cytotoxicity and Aromatase Inhibitory Activity of Flavonoids: Synthesis, Molecular Docking and In silico ADME Prediction. Anti-Cancer Agents Med Chem. 2022;22(7):1370-85. https://doi.org/10.2174/187152062166 6210827104406
  • Gandhi K, Shah U, Patel S, Patel M, Patel S, Patel A, et al. Molecular modelling and ADMET predictions of flavo- noids as prospective aromatase inhibitors. Ind J Chem. 2022;61(2):192-200.
  • Ren F, Zhang S, Mitchell SH, Butler R, Young CY. Tea poly- phenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene. 2000; 19(15):1924-32. https://doi.org/10.1038/sj.onc.1203511. PMid:10773882
  • Yang GY, Liao J, Kim K, Yurkow EJ, Yang CS. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinog. 1998; 19(4):611-6. https://doi.org/10.1093/carcin/19.4.611. PMid:9600345
  • Chen D, Daniel KG, Kuhn DJ, Kazi A, Bhuiyan M, Li L, et al. Green tea and tea polyphenols in cancer prevention. Front Biosci. 2004; 9:2618-31. https://doi.org/10.2741/1421. PMid:15358585
  • Lu J, Ho CT, Ghai G, Chen KY. Differential effects of theafla- vin monogallates on cell growth, apoptosis, and Cox-2 gene expression in cancerous versus normal cells. Cancer Res. 2000; 60(22):6465-71. PMid: 11103814.
  • Neil EJ, Termini D, Albano A, Tsiani E. Anticancer properties of theoflavins. Mol. 2021; 26:987. https://doi.org/10.3390/ molecules26040987. PMid:33668434. PMCid:PMC7917939
  • Kundu T, Dey S, Roy M, Siddiqi M, Bhattacharya RK. Induction of apoptosis in human leukemia cells by black tea and its polyphenol theaflavin. Cancer Lett. 2005; 230(1):111-21. https://doi.org/10.1016/j.canlet.2004.12.035. PMid:16253767
  • Tu YY, Tang AB, Watanabe N. The theaflavin monomers inhibit the cancer cells growth in vitro. Acta Biochim Biophys Sin. 2004; 36(7):508-12. https://doi.org/10.1093/ abbs/36.7.508. PMid:15248026
  • Hibasami H, Komiya T, Achiwa Y, Ohnishi K, Kojima T, Nakanishi K, et al. Black tea theaflavins induce programmed cell death in cultured human stomach cancer cells. Int J Mol Med. 1998; 1(4):725-32. https://doi.org/10.3892/ ijmm.1.4.725. PMid:9852288
  • Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 2015; 1(1):1-22. https://doi.org/10.1038/ nrdp.2015.80. PMid:27188459
  • Cai X, Fang C, Hayashi S, Hao S, Zhao M, Tsutsui H, Nishiguchi S, Sheng J. Pu-erh tea extract ameliorates high- fat diet-induced nonalcoholic steatohepatitis and insulin resistance by modulating hepatic IL-6/STAT3 signaling in mice. J Gastroenterol. 2016; 51(8):819-29. https://doi. org/10.1007/s00535-015-1154-0. PMid:26794005
  • Liu Z, Lin Y, Zhang S, Wang D, Liang Q, Luo G. Comparative proteomic analysis using 2DE‐LC‐MS/MS reveals the mechanism of Fuzhuan brick tea extract against hepatic fat accumulation in rats with nonalcoholic fatty liver dis- ease. Electrophoresis. 2015; 36(17):2002-16. https://doi. org/10.1002/elps.201500076. PMid:26036873
  • Yuan E, Duan X, Xiang L, Ren J, Lai X, Li Q, Sun L, Sun S. Aged oolong tea reduces high-fat diet-induced fat accumulation and dyslipidemia by regulating the AMPK/ACC signaling pathway. Nutr. 2018; 10(2):187. https://doi.org/10.3390/ nu10020187. PMid:29419789. PMCid:PMC5852763
  • Eguchi T, Kumagai C, Fujihara T, Takemasa T, Ozawa T, Numata O. Black tea high-molecular-weight polyphenol stimulates exercise training-induced improvement of endur- ance capacity in mouse via the link between AMPK and GLUT4. PloS one. 2013; 8(7). https://doi.org/10.1371/jour- nal.pone.0069480. PMid:23922719. PMCid:PMC3724851
  • Yang CS, Zhang J. Studies on the prevention of cancer and cardiometabolic diseases by tea: issues on mechanisms, effective doses, and toxicities. J Agric Food Chem. 2018; 67(19):5446-56. https://doi.org/10.1021/acs.jafc.8b05242. PMid:30541286
  • Shan Z, Nisar MF, Li M, Zhang C, Wan CC. Theaflavin chem- istry and its health benefits. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/6256618. PMid:34804369. PMCid:PMC8601833
  • Pan S, Deng X, Sun S, Lai X, Sun L, Li Q, et al. Black tea affects obesity by reducing nutrient intake and activating AMP-activated protein kinase in mice. Mol Biol Rep. 2018; 45(5):689-97. https://doi.org/10.1007/s11033-018-4205-9. PMid:29923153
  • Park B, Lee S, Lee B, Kim I, Baek N, Lee TH, et al. New ethanol extraction improves the anti-obesity effects of black tea. Arch Pharm Res. 2016; 39(3):310-20. https://doi. org/10.1007/s12272-015-0674-8. PMid:26604105
  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1):44-84. https://doi.org/10.1016/j.biocel.2006.07.001. PMid:16978905
  • Leung LK, Su Y, Chen R, Zhang Z, Huang Y, Chen ZY. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr. 2001; 131(9):2248-51. https://doi.org/10.1093/jn/131.9.2248. PMid:11533262
  • Miller NJ, Castelluccio C, Tijburg L, Rice-Evans C. The antioxidant properties of theaflavins and their gal- late esters-radical scavengers or metal chelators? FEBS Lett. 1996; 392(1):40-4. https://doi.org/10.1016/0014-
  • (96)00780-6
  • Grelle G, Otto A, Lorenz M, Frank RF, Wanker EE, Bieschke
  • J. Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils. Biochem. 2011; 50(49):10624-36. https://doi.org/10.1021/bi2012383. PMid:22054421
  • Zhang J, Cai S, Li J, Xiong L, Tian L, Liu J, Huang J, Liu Z. Neuroprotective effects of theaflavins against oxidative stress-induced apoptosis in PC12 cells. Neurochem Res. 2016; 41(12):3364-72. https://doi.org/10.1007/s11064-016- 2069-8. PMid:27686660
  • Anandhan A, Tamilselvam K, Radhiga T, Rao S, Essa MM, Manivasagam T. Theaflavin, a black tea poly- phenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson’s disease. Brain Res. 2012; 1433:104-13. https://doi.org/10.1016/j. brainres.2011.11.021. PMid:22138428
  • Zu M, Yang F, Zhou W, Liu A, Du G, Zheng L. In vitro anti- influenza virus and anti-inflammatory activities of theaflavin derivatives. Antivir Res. 2012; 94(3):217-24. https://doi. org/10.1016/j.antiviral.2012.04.001. PMid:22521753
  • Cai F, Li CR, Wu JL, Chen JG, Liu C, Min Q, et al. Theaflavin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-inflammatory effect and modulation of STAT-1. Mediators Inflamm. 2006. https://doi.org/10.1155/ MI/2006/30490. PMid:17392572. PMCid:PMC1657077
  • Lin YL, Tsai SH, Lin-Shiau SY, Ho CT, Lin JK. Theaflavin-3, 3′-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-κB in macro- phages. Eur J Pharmacol. 1999; 367(2-3):379-88. https:// doi.org/10.1016/S0014-2999(98)00953-4
  • Pereira-Caro G, Moreno-Rojas JM, Brindani N, Del Rio D, Lean ME, Hara Y, et al. Bioavailability of black tea theafla- vins: absorption, metabolism, and colonic catabolism. J Agric Food Chem. 2017; 65(26):5365-74. https://doi. org/10.1021/acs.jafc.7b01707. PMid:28595385
  • Cueva C, Gil-Sánchez I, Ayuda-Durán B, González- Manzano S, González-Paramás AM, Santos-Buelga C, et al. An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Mol. 2017; 22(1):99. https://doi.org/10.3390/molecules22010099. PMid:28067835. PMCid:PMC6155716
  • Chen H, Parks TA, Chen X, Gillitt ND, Jobin C, Sang S. Structural identification of mouse fecal metabolites of theafla- vin 3, 3′-digallate using liquid chromatography tandem mass spectrometry. J Chromatogr A. 2011; 1218(41):7297-306.https://doi.org/10.1016/j.chroma.2011.08.056. PMid:2190
  • PMCid:PMC3376406
  • Chen H, Hayek S, Rivera Guzman J, Gillitt ND, Ibrahim SA, Jobin C, et al. The microbiota is essential for the genera- tion of black tea theaflavins-derived metabolites. PLoS One. 2012; 7(12). https://doi.org/10.1371/journal.pone.0051001. PMid:23227227. PMCid:PMC3515489
  • Chen H, Sang S. Biotransformation of tea polyphenols by gut microbiota. J Funct Foods. 2014; 7:26-42. https://doi. org/10.1016/j.jff.2014.01.013
  • Chen T, Liu AB, Sun S, Ajami NJ, Ross MC, Wang H, et al. Green tea polyphenols modify the gut microbiome in db/ db mice as Co‐abundance groups correlating with the blood glucose lowering effect. Mol Nutr Food Res. 2019; 63(8). https://doi.org/10.1002/mnfr.201801064. PMid:30667580. PMCid:PMC6494111
  • Liu Z, Bruins ME, Ni L, Vincken JP. Green and black tea phenolics: Bioavailability, transformation by colonic micro- biota, and modulation of colonic microbiota. J Agric Food Chem. 2018; 66(32):8469-77. https://doi.org/10.1021/acs. jafc.8b02233. PMid:30020786
  • Liu Z, Chen Z, Guo H, He D, Zhao H, Wang Z, et al. The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food Func. 2016; 7(12):4869-79. https://doi.org/10.1039/ C6FO01439A. PMid:27812583
  • Liu Z, de Bruijn WJ, Bruins ME, Vincken JP. Microbial metabolism of theaflavin-3, 3′-digallate and its gut micro- biota composition modulatory effects. J Agric Food Chem. 2020; 69(1):232-45. https://doi.org/10.1021/acs. jafc.0c06622. PMid:33347309. PMCid:PMC7809692
  • Hu X, Ping Z, Gan M, Tao Y, Wang L, Shi J, et al. Theaflavin-3, 3′-digallate represses osteoclastogenesis and prevents wear debris-induced osteolysis via suppression of ERK pathway. Acta Biomater. 2017; 48:479-88. https://doi.org/10.1016/j. actbio.2016.11.022. PMid:27838465
  • Wu Y, Jin F, Wang Y, Li F, Wang L, Wang Q, et al. In vitro and in vivo anti-inflammatory effects of theaflavin-3, 3′-digallate on lipopolysaccharide-induced inflammation. Eur J Pharmacol. 2017; 794:52-60. https://doi.org/10.1016/j. ejphar.2016.11.027. PMid:27871911
  • Oka Y, Iwai S, Amano H, Irie Y, Yatomi K, Ryu K, et al. Tea polyphenols inhibit rat osteoclast formation and differen- tiation. J Pharmacol Sci. 2012; 118(1):55-64. https://doi. org/10.1254/jphs.11082FP
  • Myers G, Prince RL, Kerr DA, Devine A, Woodman RJ, Lewis JR, et al. Tea and flavonoid intake predict osteoporotic fracture risk in elderly Australian women: a prospective study. Am J Clin Nutr. 2015; 102(4):958-65. https://doi. org/10.3945/ajcn.115.109892. PMid:26269364
  • Teng H, Fang T, Lin Q, Song H, Liu B, Chen L. Red rasp- berry and its anthocyanins: Bioactivity beyond antioxidant capacity. Trends Food Sci Tech. 2017; 66:153-65. https://doi.org/10.1016/j.tifs.2017.05.015
  • Geleijnse JM, Launer LJ, Van der Kuip DA, Hofman A,
  • Witteman JC. Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam Study. Am J Clin Nutr. 2002; 75(5):880-6. https://doi. org/10.1093/ajcn/75.5.880. PMid:11976162
  • Vernarelli JA, Lambert JD. Tea consumption is inversely associated with weight status and other markers for metabolic syndrome in US adults. Eur J Nutr. 2013; 52(3):1039-48. https://doi.org/10.1007/s00394-012-0410-9. PMid:22777108. PMCid:PMC3515715
  • Stangl V, Dreger H, Stangl K, Lorenz M. Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res. 2007; 73(2):348-58. https://doi.org/10.1016/j.cardio- res.2006.08.022. PMid:17020753
  • Vanden Hoek TL, Shao ZU, Li CH, Zak R, Schumacker PT, Becker LB. Reperfusion injury on cardiac myo- cytes after simulated ischemia. Am J Physiol Heart Circ Physiol. 1996; 270(4):1334-41. https://doi.org/10.1152/ ajpheart.1996.270.4.H1334. PMid:8967373
  • Chen Z, Siu B, Ho YS, Vincent R, Chua CC, Hamdy RC, Chua BH. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol. 1998; 30(11):2281-9. https://doi. org/10.1006/jmcc.1998.0789. PMid:9925365
  • Horwitz LD, Fennessey PV, Shikes RH, Kong Y. Marked reduction in myocardial infarct size due to prolonged infusion of an antioxidant during reperfusion. Circ. 1994; 89(4):1792-801. https://doi.org/10.1161/01.CIR.89.4.1792. PMid:8149545
  • Urquiaga IN, Leighton F. Plant polyphenol antioxidants and oxidative stress. Biol Res. 2000; 33(2):55-64. https://doi. org/10.4067/S0716-97602000000200004. PMid:15693271
  • Yoshida H, Ishikawa T, Hosoai H, Suzukawa M, Ayaori M, Hisada T, et al. Inhibitory effect of tea flavonoids on the ability of cells to oxidize low density lipoprotein. Biochem Pharmacol. 1999; 58(11):1695-703. https://doi.org/10.1016/ S0006-2952(99)00256-7
  • Jovanovic SV, Simic MG. Antioxidants in nutrition. Ann N Y Acad Sci. 2000; 899(1):326-34. https://doi. org/10.1111/j.1749-6632.2000.tb06197.x. PMid:10863550
  • Friedman M. Overview of antibacterial, antitoxin, antivi- ral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res. 2007; 51(1):116-34. https://doi.org/10.1002/ mnfr.200600173. PMid:17195249. PMCid:PMC7168386
  • Diker KS, Akan M, Hascelik G, Yurdakök M. The bacte- ricidal activity of tea against Campylobacter jejuni and Campylobacter coli. Lett Appl Microbiol. 1991; 12(2):34-5. https://doi.org/10.1111/j.1472-765X.1991.tb00496.x
  • Padmini E, Valarmathi A, Rani MU. Comparative analy- sis of chemical composition and antibacterial activities of Mentha spicata and Camellia sinensis. Asian J Exp Biol Sci. 2010; 1(4):772-81.
  • Zhang YM, White SW, Rock CO. Inhibiting bacterial fatty acid synthesis. J Biol Chem. 2006; 281(26):17541-4. https:// doi.org/10.1074/jbc.R600004200. PMid:16648134
  • Xie Y, Xiao J, Fu C, Zhang Z, Ye Z, Zhang X. Ischemic preconditioning promotes autophagy and alleviates renal ischemia/reperfusion injury. Bio Med Res Int. 2018. https://doi.org/10.1155/2018/8353987. PMid:29607326. PMCid:PMC5828321
  • Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol. 2015; 26(8):1765-76. https://doi.org/10.1681/ASN.2015010006. PMid:25810494. PMCid:PMC4520181
  • Nisar MF, He J, Ahmed A, Yang Y, Li M, Wan C. Chemical components and biological activities of the genus Phyllanthus: A review of the recent literature. Mol. 2018; 23(10):2567. https://doi.org/10.3390/molecules23102567. PMid:30297661. PMCid:PMC6222918
  • Thiele JR, Zeller J, Kiefer J, Braig D, Kreuzaler S, Lenz Y, et al. A conformational change in C-reactive protein enhances leukocyte recruitment and reactive oxygen species gen- eration in ischemia/reperfusion injury. Front Immunol. 2018; 9:675. https://doi.org/10.3389/fimmu.2018.00675. PMid:29713320. PMCid:PMC5911593
  • Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal. 2014; 20(9):1447-62. https://doi.org/10.1089/ars.2013.5635. PMid:24124731. PMCid:PMC3936513
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxi- dants, and aging. Cell. 2005; 120(4):483-95. https://doi. org/10.1016/j.cell.2005.02.001. PMid:15734681
  • Wang LI, Tu XH, Zhao P, Song JX, Zou ZD. Protective effect of transplanted bone marrow-derived mesenchymal stem cells on pancreatitis-associated lung injury in rats. Mol Med Rep. 2012; 6(2):287-92. https://doi.org/10.3892/ mmr.2012.922. PMid:22613963
  • Li Z, Zhu J, Wan Z, Li G, Chen L, Guo Y. Theaflavin ame- liorates renal ischemia/reperfusion injury by activating the Nrf2 signalling pathway in vivo and in vitro. Biomed Pharmacother. 2021; 134. https://doi.org/10.1016/j.bio- pha.2020.111097. PMid:33341051
  • Abd El-Megeid AA, AbdAllah IZ, Elsadek MF, Abd El-Moneim YF. The protective effect of the fortified bread with green tea against chronic renal failure induced by excessive dietary arginine in male albino rats. World J Dairy Food Sci. 2009; 4(2):107-17.

Abstract Views: 160

PDF Views: 89




  • Catechins and Theaflavins: An Overview on Therapeutic Application

Abstract Views: 160  |  PDF Views: 89

Authors

Ashim Kumar Sen
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat, India
Dhanya B. Sen
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat, India
Aarti S. Zanwar
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat, India
Ramachandran Balaraman
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat, India
Umang Shah
Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Petlad, Anand, Gujarat - 388421, India
Rajesh A. Maheshwari
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Vadodara - 391760, Gujarat, India

Abstract


Flavonoids are a sort of natural substance which are basically plant secondary metabolites having a polyphenolic structure present in a wide range of food products. Flavonoids have become a vital constituent in nutraceutical, pharmacological, therapeutic, and cosmetic fields. This is owing to their capability to regulate essential cellular enzyme activity along with anti-cancer, anti-oxidative, anti-mutagenic, and anti-inflammatory effects. Through the revelation of a minimal cardiovascular death rate and the deterrence of CHD, research on flavonoids has gotten a boost. The functional mechanisms of flavonoids are still not completely known. Molecular docking and bioinformatics information are also been used to forecast potential flavonoid functions. Flavonoids are divided into several categories. Catechins and Theaflavins (TF’s) are two types of flavonoids that have been discussed in this review. ROS scavenging property of tea catechins and polyphenols have been demonstrated in vitro, and they may also serve as indirect antioxidants via their influence on transcription features and enzyme actions. There are a number of antioxidant polyphenols called collectively as “theaflavins” that are produced during the enzymatic oxidation (sometimes referred to mistakenly as “fermentation”) of black tea leaves by flavan-3-ol condensation Theaflavin-3-gallate, theaflavin-3’-gallate, and theaflavin-3-3’-digallate are the major theaflavins.


Keywords


Catechins, Flavonoids, Plants, Secondary Metabolites, Theaflavins.

References





DOI: https://doi.org/10.18311/jnr%2F2022%2F30181