Open Access Open Access  Restricted Access Subscription Access

Changes in the Protein Profile of Cervical Cancer Mice Xenograft Model in Response to Streblus asper Treatment


Affiliations
1 Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
2 Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
3 Malaysian Institute of Pharmaceuticals and Neutraceuticals, National Institute of Biotechnology, Malaysia
4 Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
 

Cervical cancer is the third most prevalent cancer in females (2018) with an estimation of 569,847 incidences and 311,365 deaths worldwide despite the rapid advancement of current technology in treating cervical cancer. Radiotherapy and chemotherapy pose side effects and subsequently hinder treatment efficacy. Therefore, taken together with the previous reports of the plants’ ability in treating cancers, Streblus asper is suggested to be a potential candidate for cervical cancer. This study was conducted to investigate the anti-cervical cancer potential of Streblus asper through the identification of key proteins and their expression that are regulated in the treatment using mice xenograft model. By employing the use of Liquid Chromatography Mass Spectrometry (LCMS), several proteins associated with cancer growth mechanisms were successfully identified. Four-hundred and fifty-two proteins common to both groups were identified, and 122 proteins were found able to be quantified. Among those proteins, 52 proteins were expressed more than 2-fold changes and 12 proteins were selected based on its established relationship with cancers, including annexin A2, 14-3-3 protein, transgelin-2, galectin-1, keratin, heat shock protein 10 and 70, glucose regulated protein (78kDa), gelsolin, alpha enolase, cofilin-1, vimentin, and calreticulin. All these proteins were downregulated upon treatment of cervical cancer tumour by Streblus asper. Pathway enrichment analysis revealed 40 related pathways which include among others, metabolism of protein, post-translational protein modification, cellular responses to external stimuli and stress, cell cycle, and apoptosis. These analyses may improve our molecular insight of the mechanisms involved in the treatment of cervical cancer tumour by Streblus asper extract.

Keywords

Anticancer, Cervical Cancer, In vivo, Proteomics, Streblus asper, Xenograft.
Font Size

User

Notifications
JOURNAL COVERS
  

  • Bruni L, Barrionuevo-Rosas L, Albero G, Aldea M, Serrano B, Valencia S, et al. Human papillomavirus and related diseases in Malaysia. ICO/IARC Inf Cent HPV Cancer (HPV Inf Centre); 2018 Dec.
  • Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends--An update. Cancer Epidemiology, Biomarkers & Prevention. 2016 Jan; 25(1):16–27. https://doi.org/10.1158/1055-9965.EPI-15-0578. PMid:26667886
  • Kleine W, Rau K, Schwoeorer D, Pfleiderer A. Prognosis of the adenocarcinoma of the cervix uteri: A comparative study. Gynecologic Oncology. 1989; 35(2):145–9. https://doi.org/10.1016/0090-8258(89)90032-2
  • Rizzo AE, Feldman S. Update on primary HPV screening for cervical cancer prevention. Current Problems in Cancer. 2018 ;0:1–14.
  • Ramakrishnan S, Partricia S, Mathan G. ScienceDirect overview of high-risk HPV ‘ s 16 and 18 infected cervical cancer: Pathogenesis to prevention. Biomedicine & Pharmacotherapy. 2015; 70:103–10. https://doi.org/10.1016/j.biopha.2014.12.041. PMid:25776487
  • Sankaranarayanan R, Joshi S, Muwonge R, Esmy PO, Basu P, Prabhu P, et al. Can a single dose of human papillomavirus (HPV) vaccine prevent cervical cancer? Early findings from an Indian study. Vaccine. 2018 Aug; 36(32 Pt A):4783–91. https:// doi.org/10.1016/j.vaccine.2018.02.087. PMid:29551226
  • Bonanni P, Zanella B, Santomauro F, Lorini C, Bechini A, Boccalini S. Safety and perception: What are the greatest enemies of HPV vaccination programmes? Vaccine. 2018; 36(36):5424–9. https://doi.org/10.1016/j.vaccine.2017.05.071. PMid:28610824
  • Laurent J, Luckett R, Feldman S. HPV vaccination and the effects on rates of HPV-related cancers. Current Problems in Cancer. 2018; 42(5):493–506. https://doi.org/10.1016/j.currproblcancer.2018.06.004. PMid:30041818
  • Levin A, Wang SA, Levin C, Tsu V, Hutubessy R. Costs of introducing and delivering HPV vaccines in low and lower middle income countries: Inputs for GAVI policy on introduction grant support to countries. PLoS One. 2014; 9(6). https://doi.org/10.1371/journal.pone.0101114. PMid:24968002. PMCid:PMC4072768
  • Nickel B, Dodd RH, Turner RM, Waller J, Marlow L, Zimet G, et al. Factors associated with the human papillomavirus (HPV) vaccination across three countries following vaccination introduction. 2017; 8(May):169–76. https://doi.org/10.1016/j.pmedr.2017.10.005. PMid:29062681. PMCid:PMC5645176
  • Priaulx J, de Koning HJ, de Kok IMCM, Széles G, McKee M. Identifying the barriers to effective breast, cervical and colorectal cancer screening in thirty one European countries using the Barriers to Effective Screening Tool (BEST). Health Policy (New York). 2018. https://doi.org/10.1016/j.healthpol.2018.08.004. PMid:30177278
  • Lobo N, Kulkarni M, Hughes S, Nair R, Khan MS, Thurairaja R. Urological complications following pelvic radiotherapy. Urology. 2018. https://doi.org/10.1016/j.urology.2018.07.017. PMid:30036617
  • Overbeek A, van den Berg MH, van Leeuwen FE, Kaspers GJL, Lambalk CB, van Dulmen-den Broeder E. Chemotherapyrelated late adverse effects on ovarian function in female survivors of childhood and young adult cancer: A systematic review. Cancer Treatment Reviews. 2017; 53:10–24. https://doi.org/10.1016/j.ctrv.2016.11.006. PMid:28056411
  • Gunderson CC, Matulonis U, Moore KN. Management of the toxicities of common targeted therapeutics for gynecologic cancers. Gynecologic Oncology. 2018; 148(3):591–600. https:// doi.org/10.1016/j.ygyno.2018.01.010. PMid:29395304
  • Rastogi S, Kulshreshtha DK, Rawat AKS. Streblus asper Lour. (Shakhotaka): A Review of its Chemical, Pharmacological and Ethnomedicinal Properties. Evidence-Based Complementary and Alternative Medicine. 2006 Jun; 3(2):217–22. https://doi.org/10.1093/ecam/nel018. PMid:16786051. PMCid:PMC1475940
  • Taweechaisupapong S, Choopan T, Singhara S, Chatrchaiwiwatana S, Wongkham S. In vitro inhibitory effect of Streblus asper leaf-extract on adhesion of Candida albicans to human buccal epithelial cells. Journal of Ethnopharmacology. 2005 Jan; 96(1–2):221–6. https:// doi.org/10.1016/j.jep.2004.09.010. PMid:15588674
  • Taweechaisupapong S, Klanrit P, Singhara S, Pitiphat W, Wongkham S. Inhibitory effect of Streblus asper leafextract on adhesion of Candida albicans to denture acrylic. Journal of Ethnopharmacology. 2006 Jul; 106(3):414–7.
  • https://doi.org/10.1016/j.jep.2006.01.021. PMid:16529890
  • Chatterjee RK, Fatma N, Murthy PK, Sinha P, Kulshrestha DK, Dhawan BN. Macrofilaricidal activity of the stembark of Streblus asper and its major active constituents. Drug Development Research. 1992; 26(1):67–78. https://doi.org/10.1002/ddr.430260106
  • Taweechaisupapong S, Wongkham S, Chareonsuk S, Suparee S, Srilalai P, Chaiyarak S. Selective activity of Streblus asper on Mutans streptococci. Journal of Ethnopharmacology. 2000 Apr; 70(1):73–9. https://doi.org/10.1016/S0378-8741(99)00140-3
  • Chen H, Li J, Wu Q, Niu XT, Tang MT, Guan XL, et al. AntiHBV activities of Streblus asper and constituents of its ischolar_mains. Fitoterapia. 2012; 83(4):643–9. https://doi.org/10.1016/j.fitote.2012.01.009. PMid:22305944
  • Li J, Huang Y, Guan X-L, Li J, Deng S-P, Wu Q, et al. Anti-hepatitis B virus constituents from the stem bark of Streblus asper. Phytochemistry. 2012 Oct; 82:100–9. https://doi.org/10.1016/j.phytochem.2012.06.023. PMid:22818524
  • Li L-Q, Li J, Huang Y, Wu Q, Deng S-P, Su X-J, et al. Lignans from the heartwood of Streblus asper and their inhibiting activities to hepatitis B virus. Fitoterapia. 2012 Mar; 83(2):303–9. https://doi.org/10.1016/j.fitote.2011.11.008. PMid:22119765
  • Sripanidkulchai B, Junlatat J, Wara-aswapati N, Hormdee D. Anti-inflammatory effect of Streblus asper leaf extract in rats and its modulation on inflammation-associated genes expression in RAW 264.7 macrophage cells. Journal of Ethnopharmacology. 2009 Jul; 124(3):566–70. https://doi.org/10.1016/j.jep.2009.04.061. PMid:19439173
  • Kumar RBS, Kar B, Dolai N, Bala A, Haldar PK. Evaluation of antihyperglycemic and antioxidant properties of Streblus asper Lour against streptozotocin-induced diabetes in rats. Asian Pacific Journal of Tropical Disease. 2012; 2(2):139–43. https://doi.org/10.1016/S2222-1808(12)60032-2
  • Choudhury MK, Venkatraman S, Upadhyay L. Phytochemical analysis and peripheral glucose utilization activity determination of Steblus asper. Asian Pacific Journal of Tropical Disease. 2012; 2(2):s656–61. https://doi.org/10.1016/S2221-1691(12)60291-3
  • Phutdhawong W, Donchai A, Korth J, Pyne SG, Picha P, Ngamkham J, et al. The components and anticancer activity of the volatile oil from Streblus asper. Flavour and Fragrance Journal. 2004; 19(5):445–7. https://doi.org/10.1002/ffj.1342
  • Seeni A, Ayunie N, Abdul Wahab R. Apoptosis Inducer from Streblus asper Extracts for Cancer Chemoprevention. In: Novel Apoptotic Regulators in Carcinogenesis; 2012. p. 1–25. https:// doi.org/10.1007/978-94-007-4917-7_1
  • Nabil M, Seeni A, Ismail WI, Rahim NA. Proteomic analysis of anti-cancer effects of streblus asper ischolar_main extract on HeLa Cancer Cells. 2019; 12(Sep):1263–77. https://doi.org/10.13005/bpj/1755
  • Nabil M, Seeni A, Ismail WI, Ab N. Induction of apoptotic mechanism by streblus asper ischolar_main extract on cervical cancer using in vitro and in vivo models. 2019; 12(Dec):1661–73. https://doi.org/10.13005/bpj/1796
  • Oghenesuvwe EE, Nwoke E, Lotanna AD. Guidelines on dosage calculation and stock solution preparation in experimental animals’ studies. 2014; 4(18):100–6.
  • Huebner K, Cannizzaro LA, Frey AZ, Hecht BK, Hecht F, Croce CM, et al. Chromosomal localization of the human genes for lipocortin I and lipocortin II. Oncogene Research. 1988; 2(4):299–310.
  • Inokuchi J, Narula N, Yee DS, Skarecky DW, Lau A, Ornstein DK, et al. Annexin A2 positively contributes to the malignant phenotype and secretion of IL‐6 in DU145 prostate cancer cells. International Journal of Cancer. 2009; 124(1):68–74. https://doi.org/10.1002/ijc.23928. PMid:18924133
  • Mohammad HS, Kurokohchi K, Yoneyama H, Tokuda M, Morishita A, Jian G, et al. Annexin A2 expression and phosphorylation are up-regulated in hepatocellular carcinoma. International Journal of Oncology. 2008; 33(6):1157–63.
  • Sharma MR, Koltowski L, Ownbey RT, Tuszynski GP, Sharma MC. Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Experimental and Molecular Pathology. 2006; 81(2):146–56. https://doi.org/10.1016/j.yexmp.2006.03.003. PMid:16643892
  • Vishwanatha JK, Chiang Y, Kumble KD, Hollingsworth MA, Pour PM. Enhanced expression of annexin II in human pancreatic carcinoma cells and primary pancreatic cancers. Carcinogenesis. 1993; 14(12):2575–9. https://doi.org/10.1093/ carcin/14.12.2575. PMid:8269629
  • Mussunoor S, Murray GI. The role of annexins in tumour development and progression. Pathological Society of Great Britain and Ireland. 2008; 216(2):131–40. https://doi.org/10.1002/path.2400. PMid:18698663
  • Bae SM, Lee C-H, Cho YL, Nam KH, Kim YW, Kim CK, et al. Two-dimensional gel analysis of protein expression profile in squamous cervical cancer patients. Gynecologic Oncology. 2005 Oct; 99(1):26–35. https://doi.org/10.1016/j.ygyno.2005.05.041. PMid:16051329
  • Hellman K, Alaiya AA, Becker S, Lomnytska M, Schedvins K, Steinberg W, et al. Differential tissue-specific protein markers of vaginal carcinoma. British Journal of Cancer. 2009; 100(8):1303. https://doi.org/10.1038/sj.bjc.6604975. PMid:19367286. PMCid:PMC2676541
  • Khorrami A, Sharif Bagheri M, Tavallaei M, Gharechahi J. The functional significance of 14-3-3 proteins in cancer: Focus on lung cancer. Hormone Molecular Biology and Clinical Investigation. 2017 Aug; 32(3). https://doi.org/10.1515/hmbci2017-0032. PMid:28779564
  • Wilker E, Yaffe MB. 14-3-3 Proteins--a focus on cancer and human disease. Journal of Molecular and Cellular Cardiology. 2004 Sep; 37(3):633–42. https://doi.org/10.1016/j.yjmcc.2004.04.015. PMid:15350836
  • Liu T-A, Jan Y-J, Ko B-S, Liang S-M, Chen S-C, Wang J, et al. 14-3-3ε overexpression contributes to epithelial-mesenchymal transition of hepatocellular carcinoma. PLoS One. 2013 Mar 6; 8(3):e57968. https://doi.org/10.1371/journal.pone.0057968. PMid:23483955 PMCid:PMC3590290
  • Pulukuri SM, Estes N, Rao JS. 14-3-3 sigma promotes cell survival in human prostate cancer cells. Cancer Research. 2005; 65(9 Supplement):229.
  • Xiao Y, Lin VY, Ke S, Lin GE, Lin F-T, Lin W-C. 14-3-3τ Promotes breast cancer invasion and metastasis by inhibiting RhoGDIα. Molecular and Cellular Biology. 2014; 34(14):2635– 49. https://doi.org/10.1128/MCB.00076-14. PMid:24820414. PMCid:PMC4097670
  • Liu T, Jan Y, Ko B, Hung Y, Hsu C, Shen T, et al. Increased Expression of 14-3-3 β Promotes Tumor Progression and Predicts Extrahepatic Metastasis and Worse Survival in Hepatocellular Carcinoma. 2011; 179(6):2698–708. https://doi.org/10.1016/j.ajpath.2011.08.010. PMid:21967815. PMCid:PMC3260858
  • Li Z, Zhao J, Du Y, Park HR, Sun S-Y, Bernal-Mizrachi L, et al. Down-regulation of 14-3-3ζ suppresses anchorageindependent growth of lung cancer cells through anoikis activation. Proc Natl Acad Sci. 2008; 105(1):162–7. https://doi.org/10.1073/pnas.0710905105. PMid:18162532. PMCid:PMC2224179
  • Zhang W, Shen Q, Chen M, Wang Y, Zhou Q, Tao X, et al. The role of 14-3-3 proteins in gynecological tumors CANCER 3. 1. Changes in 14-3-3 proteins in cervical carcinogenesis 3. 2. Roles of 14-3-3 proteins in the treatment of cervical cancer. Frontiers in Bioscience. 2015; 934–45. https://doi.org/10.2741/4348. PMid:25961534
  • Dvorakova M, Nenutil R, Bouchal P. Transgelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Review of Proteomics. 2014 Apr; 11(2):149–65. https://doi.org/10.1586/14789450.2014.860358. PMid:24476357
  • Kristo I, Bajusz I, Bajusz C, Borkuti P, Vilmos P. Actin, actinbinding proteins, and actin-related proteins in the nucleus. Histochemistry and Cell Biology. 2016 Apr; 145(4):373–88. https://doi.org/10.1007/s00418-015-1400-9. PMid:26847179
  • Meng T, Liu L, Hao R, Chen S, Dong Y. Transgelin-2: A potential oncogenic factor. Tumor Biolody. 2017; (277). https://doi.org/10.1177/1010428317702650. PMid:28639888
  • Fukushima C, Murakami A, Yoshitomi K, Sueoka K, Nawata S, Nakamura K, et al. Comparative proteomic profiling in squamous cell carcinoma of the uterine cervix. Proteomics – Clinical Applications. 2011 Apr 1; 5(3–4):133–40. https://doi.org/10.1002/prca.201000077. PMid:21365771
  • Yakabe K, Murakami A, Kajimura T, Nishimoto Y, Sueoka K, Sato S, et al. Functional significance of transgelin-2 in uterine cervical squamous cell carcinoma. Journal of Obstetrics and Gynaecology Research. 2016 May; 42(5):566–72. https://doi.org/10.1111/jog.12935. PMid:26891454
  • Ebrahim AH, Alalawi Z, Mirandola L, Rakhshanda R, Dahlbeck S, Nguyen D, et al. Galectins in cancer: Carcinogenesis, diagnosis and therapy. Annals of Translational Medicine. 2014 Sep; 2(9):88.
  • Dalotto-Moreno T, Croci DO, Cerliani JP, Martinez-Allo VC, Dergan-Dylon S, Mendez-Huergo SP, et al. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Research. 2013 Feb; 73(3):1107–17. https://doi.org/10.1158/0008-5472.CAN-122418. PMid:23204230
  • Compagno D, Gentilini LD, Jaworski FM, Perez IG, Contrufo G, Laderach DJ. Glycans and galectins in prostate cancer biology, angiogenesis and metastasis. Glycobiology. 2014 Oct; 24(10):899–906. https://doi.org/10.1093/glycob/cwu055. PMid:24939371
  • Carlini MJ, Roitman P, Nuñez M, Pallotta MG, Boggio G, Smith D, et al. Clinical relevance of galectin-1 expression in non-small cell lung cancer patients. Lung Cancer. 2014; 84(1):73–8. https:// doi.org/10.1016/j.lungcan.2014.01.016. PMid:24560493
  • Kim H-J, Do I-G, Jeon H-K, Cho YJ, Park YA, Choi J-J, et al. Galectin 1 expression is associated with tumor invasion and metastasis in stage IB to IIA cervical cancer. Human Pathology. 2013; 44(1):62–8. https://doi.org/10.1016/j.humpath.2012.04.010. PMid:22939954
  • Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Experimental Cell Research. 2007 Jun; 313(10):2021–32. https://doi.org/10.1016/j.yexcr.2007.03.005. PMid:17434482
  • Karantza V. Keratins in health and cancer: more than mere epithelial cell markers. Oncogene. 2011 Jan; 30(2):127–38. https://doi.org/10.1038/onc.2010.456. PMid:20890307. PMCid:PMC3155291
  • Alix-Panabières C, Vendrell J-P, Slijper M, Pellé O, Barbotte E, Mercier G, et al. Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast Cancer Research. 2009 Jun; 11(3):R39. https://doi.org/10.1186/bcr2326. PMid:19549321. PMCid:PMC2716508
  • Ding S-J, Li Y, Tan Y-X, Jiang M-R, Tian B, Liu Y-K, et al. From Proteomic Analysis to Clinical Significance. Molecular & Cellular Proteomics. 2004; 3(1):73–81. https://doi.org/10.1074/ mcp.M300094-MCP200. PMid:14593079
  • Somiari RI, Sullivan A, Russell S, Somiari S, Hu H, Jordan R, et al. High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast. Proteomics. 2003 Oct; 3(10):1863–73. https://doi.org/10.1002/pmic.200300560. PMid:14625848
  • Jia H, Halilou AI, Hu L, Cai W, Liu J, Huang B. Heat shock protein 10 (Hsp10) in immune-related diseases: One coin, two sides. International Journal of Biochemistry and Molecular Biology. 2011; 2(1):47–57.
  • Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005 Jun; 10(2):86–103. https://doi.org/10.1379/CSC-99r.1. PMid:16038406. PMCid:PMC1176476
  • Wang J-T, Ding L, Jiang S-W, Hao J, Zhao W-M, Zhou Q, et al. Folate deficiency and aberrant expression of DNA methyltransferase 1 were associated with cervical cancerization. Current Pharmaceutical Design. 2014; 20(11):1639–46.
  • Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat Shock Proteins and Cancer. Trends in Pharmacological Sciences. 2017 Mar 1; 38(3):226–56. https://doi.org/10.1016/j.tips.2016.11.009. PMid:28012700
  • Cappello F, Bellafiore M, David S, Anzalone R, Zummo G. Ten kilodalton heat shock protein (HSP10) is overexpressed during carcinogenesis of large bowel and uterine exocervix. Cancer Letters. 2003 Jun; 196(1):35–41. https://doi.org/10.1016/S03043835(03)00212-X
  • Cappello F. HSP60 and HSP10 as diagnostic and prognostic tools in the management of exocervical carcinoma. Vol. 91, Gynecologic Oncology. United States; 2003. p. 661. https://doi.org/10.1016/j.ygyno.2003.08.009. PMid:14675699
  • Tetu B, Popa I, Bairati I, L’Esperance S, Bachvarova M, Plante M, et al. Immunohistochemical analysis of possible chemoresistance markers identified by micro-arrays on serous ovarian carcinomas. Modern Pathology features diagnostic anatomic pathology Inc. 2008 Aug; 21(8):1002–10. https://doi.org/10.1038/modpathol.2008.80. PMid:18500265
  • Kumar S, Stokes J, Singh UP, Gunn KS, Acharya A, Manne U, et al. Targeting Hsp70: A possible therapy for cancer. Cancer Letters. 2017; 374:156–66. https://doi.org/10.1016/j.canlet.2016.01.056. PMid:26898980. PMCid:PMC5553548
  • Lee AS. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nature Reviews Cancer. 2014 Apr; 14(4):263–76. https://doi.org/10.1038/nrc3701. PMid:24658275. PMCid:PMC4158750
  • Dong D, Stapleton C, Luo B, Xiong S, Ye W, Zhang Y, et al. A critical role for GRP78/BiP in the tumor microenvironment for neovascularization during tumor growth and metastasis. Cancer Research. 2011; 71(8):2848–57. https://doi.org/10.1158/00085472.CAN-10-3151. PMid:21467168. PMCid:PMC3078191
  • Li Z, Zhang L, Zhao Y, Li H, Xiao H, Fu R, et al. Cell-surface GRP78 facilitates colorectal cancer cell migration and invasion. International Journal of Biochemistry & Cell Biology. 2013; 45(5):987–94. https://doi.org/10.1016/j.biocel.2013.02.002. PMid:23485528
  • Winder SJ, Kathryn R, Winder SJ, Ayscough KR. Actin-binding proteins Actin-binding Proteins. 2005; 2005(L):651–4. https:// doi.org/10.1242/jcs.01670. PMid:15701920
  • Deng R, Hao J, Han W, Ni Y, Huang X, Hu Q. Gelsolin regulates proliferation, apoptosis, migration and invasion in human oral carcinoma cells. Oncology Letters. 2015 May; 9(5):2129– 34. https://doi.org/10.3892/ol.2015.3002. PMid:26137026. PMCid:PMC4467278
  • An J-H, Kim J-W, Jang S-M, Kim C-H, Kang E-J, Choi K-H. Gelsolin negatively regulates the activity of tumor suppressor p53 through their physical interaction in hepatocarcinoma HepG2 cells. Biochemical and Biophysical Research Communications. 2011 Aug; 412(1):44–9. https://doi.org/10.1016/j.bbrc.2011.07.034. PMid:21801713
  • Liao C-J, Wu T-I, Huang Y-H, Chang T-C, Wang C-S, Tsai M-M, et al. Overexpression of gelsolin in human cervical carcinoma and its clinicopathological significance. Gynecologic Oncology. 2011 Jan; 120(1):135–44. https://doi.org/10.1016/j.ygyno.2010.10.005. PMid:21035170
  • Fu Q, Liu Y, Fan Y, Hua S, Qu H, Dong S, et al. Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K / AKT pathway. 2015; 1–13. https://doi.org/10.1186/s13045-015-01175. PMid:25887760. PMCid:PMC4359783
  • Song Y, Luo Q, Long H, Hu Z, Que T, Zhang X, et al. Alphaenolase as a potential cancer prognostic marker promotes cell growth, migration, and invasion in glioma. 2014; 1–12. https://doi.org/10.1186/1476-4598-13-235. PMid:25600072. PMCid:PMC4464720
  • Sun L, Lu T, Tian K, Zhou D, Yuan J, Wang X, et al. Alphaenolase promotes gastric cancer cell proliferation and metastasis via regulating AKT signaling pathway. European Journal of Pharmacology. 2019 Feb; 845:8215. https://doi.org/10.1016/j.ejphar.2018.12.035. PMid:30582908
  • Sun L, Guo C, Cao J, Burnett J, Yang Z, Ran Y, et al. Overexpression of alpha-enolase as a prognostic biomarker in patients with pancreatic cancer. International Journal of Medical Sciences. 2017; 14(7):655–61. https://doi.org/10.7150/ ijms.18736. PMid:28824297. PMCid:PMC5562116
  • Bamburg JR, Mcgough A. Putting a new twist on actin: ADF / cofilins modulate actin dynamics. 1999; 9(Sep):364–70. https:// doi.org/10.1016/S0962-8924(99)01619-0
  • Ding S, Li Y, Shao X, Zhou H, Zeng R, Tang Z, et al. Proteome analysis of hepatocellular carcinoma cell strains, MHCC97‐H and MHCC97‐L, with different metastasis potentials. Proteomics. 2004; 4(4):982–94. https://doi.org/10.1002/ pmic.200300653. PMid:15048980
  • Dowling P, Meleady P, Dowd A, Henry M, Glynn S, Clynes M. Proteomic analysis of isolated membrane fractions from superinvasive cancer cells. Biochim Biophys Acta (BBA)Proteins Proteomics. 2007; 1774(1):93–101. https://doi.org/10.1016/j.bbapap.2006.09.014. PMid:17085086
  • Keshamouni VG, Michailidis G, Grasso CS, Anthwal S, Strahler JR, Walker A, et al. Differential protein expression profiling by iTRAQ− 2DLC− MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. Journal of Proteome Research. 2006; 5(5):1143–54. https://doi.org/10.1021/pr050455t. PMid:16674103
  • Martoglio A-M, Tom BDM, Starkey M, Corps AN, CharnockJones DS, Smith SK. Changes in tumorigenesis-and angiogenesis-related gene transcript abundance profiles in ovarian cancer detected by tailored high density cDNA arrays. Molecular Medicine. 2000; 6(9):750. https://doi.org/10.1007/ BF03402191
  • Sinha P, Hütter G, Köttgen E, Dietel M, Schadendorf D, Lage H. Increased expression of epidermal fatty acid binding protein, cofilin, and 14‐3‐3‐σ (stratifin) detected by twodimensional gel electrophoresis, mass spectrometry and microsequencing of drug‐resistant human adenocarcinoma of the pancreas. Electrophoresis. 1999; 20(14):2952–60. https://doi.org/10.1002/(SICI)1522-2683(19991001)20:14<2952::AIDELPS2952>3.0.CO;2-H
  • Turhani D, Krapfenbauer K, Thurnher D, Langen H, Fountoulakis M. Identification of differentially expressed, tumor‐associated proteins in oral squamous cell carcinoma by proteomic analysis. Electrophoresis. 2006; 27(7):1417–23. https://doi.org/10.1002/elps.200500510. PMid:16568407
  • Unwin RD, Craven RA, Harnden P, Hanrahan S, Totty N, Knowles M, et al. Proteomic changes in renal cancer and coordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics. 2003; 3(8):1620–32. https://doi.org/10.1002/pmic.200300464 PMid:12923786
  • Mousavi S, Safaralizadeh R, Hosseinpour-Feizi M, AzimzadehIsfanjani A, Hashemzadeh S. Study of cofilin 1 gene expression in colorectal cancer. Journal of Gastrointestinal Oncology. 2018 Oct; 9(5):791–6.
  • Pappa KI, Lygirou V, Kontostathi G, Zoidakis J, Makridakis M, Vougas K, et al. Proteomic analysis of normal and cancer cervical cell lines reveals deregulation of cytoskeleton-associated proteins. Cancer Genomics Proteomics. 2017; 14(4):253– 66. https://doi.org/10.21873/cgp.20036. PMid:28647699. PMCid:PMC5572303
  • Polachini GM, Sobral LM, Mercante AMC, Paes-Leme AF, Xavier FCA, Henrique T, et al. Proteomic approaches identify members of cofilin pathway involved in oral tumorigenesis. PLoS One. 2012; 7(12):e50517. https://doi.org/10.1371/journal.pone.0050517. PMid:23227181. PMCid:PMC3515627
  • Wang F, Wu D, Fu H, He F, Xu C, Zhou J, et al. Cofilin 1 promotes bladder cancer and is regulated by TCF7L2. Oncotarget. 2017 Sep 6; 8(54):92043–54. https://doi.org/10.18632/ oncotarget.20664. PMid:29190896. PMCid:PMC5696162
  • Wang Y, Kuramitsu Y, Ueno T, Suzuki N, Yoshino S, Iizuka N, et al. Differential expression of up-regulated cofilin-1 and downregulated cofilin-2 characteristic of pancreatic cancer tissues. Oncology Reports. 2011; 26(6):1595–9. https://doi.org/10.3892/or.2011.1447
  • Yang Z-L, Miao X, Xiong L, Zou Q, Yuan Y, Li J, et al. CFL1 and Arp3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinomas of gallbladder. Cancer Investigation. 2013; 31(2):132–9. https://doi.org/10.3109/07357907.2012.756113. PMid:2332082
  • Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and Molecular Life Sciences. 2011 Sep; 68(18):3033–46. https://doi.org/10.1007/s00018-0110735-1. PMid:21637948. PMCid:PMC3162105
  • Gilles C, Polette M, Piette J, Delvigne A, Thompson EW, Foidart J, et al. Vimentin expression in cervical carcinomas: association with invasive and migratory potential. Journal of Pathology. 1996; 180(2):175–80. https://doi.org/10.1002/(SICI)10969896(199610)180:2<175::AID-PATH630>3.0.CO;2-G
  • Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, et al. Transactivation of vimentin by β-catenin in human breast cancer cells. Cancer Research. 2003; 63(10):2658– 64. https://doi.org/10.1136/ijgc-00009577-200303001-00219. PMid:12750294
  • Hong S-H, Misek DE, Wang H, Puravs E, Hinderer R, Giordano TJ, et al. Identification of a specific vimentin isoform that induces an antibody response in pancreatic cancer. Biomark Insights. 2006; 1. https://doi.org/10.1177/117727190600100006
  • Jin H, Morohashi S, Sato F, Kudo Y, Akasaka H, Tsutsumi S, et al. Vimentin expression of esophageal squamous cell carcinoma and its aggressive potential for lymph node metastasis. Biomedical Research. 2010; 31(2):105–12. https://doi.org/10.2220/ biomedres.31.105. PMid:20460738
  • Ngan CY, Yamamoto H, Seshimo I, Tsujino T, Man-i M, Ikeda JI, et al. Quantitative evaluation of vimentin expression in tumour stroma of colorectal cancer. British Journal of Cancer. 2007; 96(6):986. https://doi.org/10.1038/sj.bjc.6603651. PMid:17325702. PMCid:PMC2360104
  • Takemura K, Hirayama R, Hirokawa K, Inagaki M, Tsujimura K, Esaki Y, et al. Expression of vimentin in gastric cancer: a possible indicator for prognosis. Pathobiology. 1994; 62(3):149–54. https://doi.org/10.1159/000163895. PMid:7945921
  • Wu M, Bai X, Xu G, Wei J, Zhu T, Zhang Y, et al. Proteome analysis of human androgen‐independent prostate cancer cell lines: Variable metastatic potentials correlated with vimentin expression. Proteomics. 2007; 7(12):1973–83. https://doi.org/10.1002/pmic.200600643. PMid:17566973
  • Vuoriluoto K, Haugen H, Kiviluoto S, Mpindi JP, Nevo J, Gjerdrum C, et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene. 2011; 30(12):1436. https://doi.org/10.1038/onc.2010.509. PMid:21057535
  • Walsh N, O’Donovan N, Kennedy S, Henry M, Meleady P, Clynes M, et al. Identification of pancreatic cancer invasionrelated proteins by proteomic analysis. Proteome Science. 2009; 7(1):3. https://doi.org/10.1186/1477-5956-7-3. PMid:19216797. PMCid:PMC2646716
  • Chen C-N, Chang C-C, Su T-E, Hsu W-M, Jeng Y-M, Ho M-C, et al. Identification of calreticulin as a prognosis marker and angiogenic regulator in human gastric cancer. Annals of Surgical Oncology. 2009; 16(2):524–33. https://doi.org/10.1245/s10434008-0243-1. PMid:19050968
  • Sheng W, Chen C, Dong M, Zhou J, Liu Q, Dong Q, et al. Overexpression of calreticulin contributes to the development and progression of pancreatic cancer. Journal of Cellular Physiology. 2014; 229(7):887–97. https://doi.org/10.1002/ jcp.24519. PMid:24264800
  • Vaksman O, Davidson B, Tropé C, Reich R. Calreticulin expression is reduced in high-grade ovarian serous carcinoma effusions compared with primary tumors and solid metastases. Human Pathology. 2013; 44(12):2677–83. https://doi.org/10.1016/j.humpath.2013.07.009. PMid:24060004
  • Alfonso P, Núñez A, Madoz‐Gurpide J, Lombardia L, Sánchez L, Casal JI. Proteomic expression analysis of colorectal cancer by two‐dimensional differential gel electrophoresis. Proteomics. 2005; 5(10):2602–11. https://doi.org/10.1002/pmic.200401196. PMid:15924290
  • Du X-L, Hu H, Lin D-C, Xia S-H, Shen X-M, Zhang Y, et al. Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. Journal of Molecular Medicine. 2007; 85(8):863–75. https://doi.org/10.1007/s00109007-0159-4. PMid:17318615
  • Harada K, Takenawa T, Ferdous T, Kuramitsu Y, Ueyama Y. Calreticulin is a novel independent prognostic factor for oral squamous cell carcinoma. Oncology Letters. 2017 Jun; 13(6):4857– 62. https://doi.org/10.3892/ol.2017.6062. PMid:28599487. PMCid:PMC5452987
  • Kageyama S, Isono T, Iwaki H, Wakabayashi Y, Okada Y, Kontani K, et al. Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. Clinical Chemistry. 2004; 50(5):857–66. https://doi.org/10.1373/ clinchem.2003.027425. PMid:14764641
  • Matsukuma S, Yoshimura K, Ueno T, Oga A, Inoue M, Watanabe Y, et al. Calreticulin is highly expressed in pancreatic cancer stem-like cells. Cancer Science. 2016 Nov 1; 107(11):1599–609. https://doi.org/10.1111/cas.13061. PMid:27561105. PMCid:PMC5132278
  • Zamanian M, Qader Hamadneh LA, Veerakumarasivam A, Abdul Rahman S, Shohaimi S, Rosli R. Calreticulin mediates an invasive breast cancer phenotype through the transcriptional dysregulation of p53 and MAPK pathways. Cancer Cell International. 2016; 16(1):56. https://doi.org/10.1186/s12935016-0329-y. PMid:27418879. PMCid:PMC4944499
  • Opas M, Szewczenko-Pawlikowski M, Jass GK, Mesaeli N, Michalak M. Calreticulin modulates cell adhesiveness via regulation of vinculin expression. Journal of Cell Biology. 1996; 135(6):1913–23. https://doi.org/10.1083/jcb.135.6.1913. PMid:8991101. PMCid:PMC2133944
  • Lu Y-C, Chen C-N, Wang B, Hsu W-M, Chen S-T, Chang K-J, et al. Changes in tumor growth and metastatic capacities of J82 human bladder cancer cells suppressed by down-regulation of calreticulin expression. American Journal of Pathology. 2011; 179(3):1425–33. https://doi.org/10.1016/j.ajpath.2011.05.015. PMid:21723245. PMCid:PMC3157280
  • Lu Y-C, Weng W-C, Lee H. Functional roles of calreticulin in cancer biology. BioMed Research International. 2015.

Abstract Views: 283

PDF Views: 142




  • Changes in the Protein Profile of Cervical Cancer Mice Xenograft Model in Response to Streblus asper Treatment

Abstract Views: 283  |  PDF Views: 142

Authors

Muhammad Nabil
Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
Azman Seeni
Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
Wan Ismahanisa Ismail
Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200 Kepala Batas, Pulau Pinang, Malaysia
Mohd Hafiz Mail
Malaysian Institute of Pharmaceuticals and Neutraceuticals, National Institute of Biotechnology, Malaysia
Nurhidayah Ab. Rahim
Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia

Abstract


Cervical cancer is the third most prevalent cancer in females (2018) with an estimation of 569,847 incidences and 311,365 deaths worldwide despite the rapid advancement of current technology in treating cervical cancer. Radiotherapy and chemotherapy pose side effects and subsequently hinder treatment efficacy. Therefore, taken together with the previous reports of the plants’ ability in treating cancers, Streblus asper is suggested to be a potential candidate for cervical cancer. This study was conducted to investigate the anti-cervical cancer potential of Streblus asper through the identification of key proteins and their expression that are regulated in the treatment using mice xenograft model. By employing the use of Liquid Chromatography Mass Spectrometry (LCMS), several proteins associated with cancer growth mechanisms were successfully identified. Four-hundred and fifty-two proteins common to both groups were identified, and 122 proteins were found able to be quantified. Among those proteins, 52 proteins were expressed more than 2-fold changes and 12 proteins were selected based on its established relationship with cancers, including annexin A2, 14-3-3 protein, transgelin-2, galectin-1, keratin, heat shock protein 10 and 70, glucose regulated protein (78kDa), gelsolin, alpha enolase, cofilin-1, vimentin, and calreticulin. All these proteins were downregulated upon treatment of cervical cancer tumour by Streblus asper. Pathway enrichment analysis revealed 40 related pathways which include among others, metabolism of protein, post-translational protein modification, cellular responses to external stimuli and stress, cell cycle, and apoptosis. These analyses may improve our molecular insight of the mechanisms involved in the treatment of cervical cancer tumour by Streblus asper extract.

Keywords


Anticancer, Cervical Cancer, In vivo, Proteomics, Streblus asper, Xenograft.

References





DOI: https://doi.org/10.18311/jnr%2F2020%2F24474