The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Background/Objectives: - Feature Selection is applicable to decrease the number of features in various applications wherein the data include hundreds and thousands of features. The objective of this study is to choose Genetic Algorithm for feature selection to obtain better fitness function. Methods/Statistical Analysis: Particle Swarm Optimization (PSO) approach is used for selecting the subset from the combination of texture based features and providing the better fitness values. In this paper PSO is used to obtain the feature sets and the performance is compared with genetic algorithm. Support vector machine classifier is used to improve the classification accuracy. Findings: The experimental results shows that PSO overall accuracy is improved to LISS IV 1.7%, 1.4% and 2.9% and the kappa coefficient is improved to 0.06%, 0.012% and 0.39% as compared to GA. Application/Improvements: The Fitness value obtained by GA is more complex and not accurate. To reduce the complexity and increase the accuracy Particle Swarm optimization is used. Hence PSO improved the quality of texture based images.

Keywords

Artificial Neural Networks, Feature Extraction, Genetic Algorithm, Particle Swarm Optimization, Support Vector Machine
User