
Abstract
Generally, legacy data of various domains have been expressed through different formats over the web. However, most
of the contents are available in static html format. Nowadays, the majority of the current web pages are designed and
developed in dynamic HTML. Different kind of advanced templates have been used. Until now, there is a plethora of web
pages available in static HTML format to describe through the RDF format. In this article, an Ontology based framework
has been proposed to nurture the static HTML pages and exploit them in RDF format for backup purpose as well as better
reusability in the domain of Semantic Web.

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(16), 60439, July 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

A Framework for Generation of RDF Data from HTML
Arup Sarkar1, Subha Koley1, Ujjal Marjit2* and Utpal Biswas1

1Department of Computer Science & Engineering, University of Kalyani, Kalyani - 741235, West Bengal, India;
 tellarup@gmail.com, utpal01in@yahoo.com

2C.I.R.M. University of Kalyani, Kalyani - 741235, West Bengal, India;
 marjitujjal@gmail.com

1.  Introduction

A new era of digital age has started to flourish the way
of information sharing and processing. From the very
beginning, a numerous number of programmers, scien-
tists, developers have paid a lot of attention to enhance the
World Wide Web (WWW). The inventor of World Wide
Web, Sir Tim Berners-Lee came up with newer concepts
for the World Wide Web with the promises of new pos-
sibilities. He brings a new concept called Semantic Web1,2;
a web of data1,3 along with their meanings. It makes us to
believe that data could be machine processable as well as
machine understandable. Here, a new data representation
model such as Resource Description Framework (RDF)4

in Semantic Web domain has been introduced to describe
the data more expressively through its semantics. Now,
the information is expressed in machine processable and
understandable way through the use of RDF technology.

In general, semantic gives meaningful informa-
tion about the data to understand the hidden meanings.
Thereafter, any description regarding a living or non-living
entity is denoted as semantic data. However, this explana-

tion of semantic data leads to a simpler view regarding
the term, while describing anything semantically is pos-
sible to become very complex as well as complicated in
nature. Semantic web deals with such semantic descrip-
tions about web information. Under this circumstance,
it is required to understand why we need such semantic
description about those documents scattered over the
web. First of all, it is needed to know how the traditional
web actually works. Traditional web is nothing but web
of documents i.e. a huge storage of information. This
information normally as web documents. The collection
of documents is called ‘web’ because most of these docu-
ments are somehow connected with each other through
hyper-links. The links among the documents are visual-
ized as spider web made by web documents. Hence, it is
called web of documents. Machines as well as different
web applications are intended to access and process the
web documents. Sometimes, they mean to represent these
documents over the web browser in a specific format as
per the instruction given in those documents through
syntaxes. Machines or applications mechanically process
them followed by the syntaxes and executes as per the

Keywords: HTML, Ontology, RDF, Regular Expression, Semantic Web

A Framework for Generation of RDF Data from HTML

Indian Journal of Science and TechnologyVol 8 (16) | July 2015 | www.indjst.org 2

predefined instructions. This behaviour of machines or
applications about the web documents explain one thing
that all the information which is held in those documents
are machine processable, but they cannot understand it
as humans do. Meaningful semantics are added to make
the data available from these web documents. Normally
the semantic descriptions are generated separately using
RDF statements. Different and more than one ontologies
are used to describe the terms semantically. These kind of
semantic descriptions are saved as documents, they also
known as semantic mark-ups. Generation of semantic
mark-ups is taken here as the first step. Next step is to add
a link to the original document so that any software agent
traversing through that web document may know that a
semantic description for the page is present on the web
for further processing.

2.  Literature Survey
According to the existing literature in the domain of
semantic web, publishing legacy data of different domain
into RDF format is not a new attempt. Many works
already have done in this research area. In this article, a
framework has been proposed to convert the contents of
static HTML page to RDF. A few numbers of works are
already presented in this domain. The main limitations
of the existing works are, their design is for specific kind
of web projects only. That means, if the target web pages
under consideration are changed, then the whole con-
figuration for the working framework has to be changed.
Although, the implementation of the framework has been
reconsidered. There is no doubt to accept that these kinds
of jobs are pretty much hectic and annoying. Though,
there are lots of differences present in various approaches.

During the last few years, extraction of structured
data from web pages is an important concern in this field.
Many similar works have been proposed throughout the
literatures. Arasu et al.5 proposed a methodology to extract
structured data from web pages. The authors clearly
explained the methods of structured data extraction. In
their method, they proposed some rules to automatically
deduce the template followed by a page or a collection of
pages without any human generated input. The algorithm
automatically finds out unknown template which is used
by the target pages and subsequently extracts informa-
tion from the pages. The algorithm is known as ‘ExAlg’
that works fine against some data rich sites, wherein every

page followed a pattern or template to gather information
throughout the pages.

A new approach called Data Rover has been pro-
posed by Davulcu et al.6 A taxonomy based crawler has
been applied in the system to select and extract data from
websites. Data Rover takes the page’s DOM (Document
Object Model) tree as input to apply a page segmenta-
tion algorithm to find out the different logical segments
of the pages. The authors have been defined a page seg-
mentation algorithm to identify different sections from
the DOM tree of the page of a product. They also used a
website as input that describes about the products. But,
it is important that all the content has been categorized
properly to ensure the success of their works. However,
they did not mention how the proposed system will be
applied to other kinds of web pages where the contents
are not well categorized. In our view, it seems to be a limi-
tation, since every kind of static HTML pages are not well
structured. However, it will perform well in a particular
domain of websites.

Cafarella et al.7,8 described an aggregated approach of
different types of methodology. The authors7 showed how
three different projects such as ‘TextRunner’, ‘WebTables’
and ‘Deep-web crawling’ have been combined to extract
structured data from different types of web page. These
promising approaches are about to extract structured
data from web. More precisely, the natural language pro-
cessing approach in the TextRunner project may prove
to be useful to solve our problem. Our point of interest
centre around the TextRunner, because only this work
targets the normal text over the web while other two,
i.e. WebTables and Deep-web crawling focus on the data
available from the HTML tables and backend databases
used on the web respectively. These tables and databases
are quite structured in nature as well as much easier to
extract than extracting structured data from a piece of
natural unstructured text.

Myllymaki9 discussed regarding a XML based software
framework called ANDES to extract semi-structured data
from the target websites to make them better structured.

A cluster based approach ‘ClustVX’ has been illus-
trated by Grigalis10 to retrieve structured data from the
web. The main drawback of this project is the inability to
deal with the complete unstructured data.

One of the most popular projects about structured
data extraction is the DBpedia project11. The target of
DBpedia is to extract the structured data of page con-

Arup Sarkar, Subha Koley, Ujjal Marjit and Utpal Biswas

Indian Journal of Science and Technology 3Vol 8 (16) | July 2015 | www.indjst.org

tents or articles from Wikipedia12. DBpedia performs
the aforesaid job through the framework called DBpedia
Information Extraction Frameowrk (DIEF)13. It also uses
ontology to describe the key terms and contents extracted
from the Wikipedia. The main drawback of this project
is, its framework is designed considering highly catego-
rized and template based data. More specifically, it is
designed to extract structured data from Wikipedia pages
and publish them as Linked Data over the web of data by
interlinking them with different knowledge bases.

 Dbpedia-Live14,15 has been launched with same
approach that follows a live synchronization method, so
that all the current updates within Wikipedia immedi-
ately get reflected inside the DBpedia-Live dataset.

3. � Brief Overview on Structured
Data, Unstructured Data and
Semantic Data

It does not matter if the data is structured or unstructured,
since both types of data represent some information.
However, most of the time, structured data are possible
to chop down into different homogeneous categories.
Unstructured data are not possible to treat alike the struc-
tured data due to its heterogeneous nature.

As of now, semantic data represents some sort of
structured data along with their meaning. Semantic data
are collection of meaningful structured data.

Structured data means, the data is possible to break
down into chunks of data. The meaningful pieces of data,
as like as key and value pairs. At the beginning this key-
value pairs may not be very meaningful for further use
since the pairs come as a collection of keyed terms that
can be uniquely identifiable. These terms also come with-
out any information about the relations among each other.
Addition of more information describing their meaning
will help to understand the use of these terms, but it is a
challenging prospect. Here, the semantic web technology
plays a key role.

Unstructured data represents such information,
which is not decomposable easily into key-value manner.
It is a very difficult job to identify the key information
from the unstructured data and it is almost impossible to
add semantics to them.

4. � The Proposed Ontology Based
Framework

The proposed framework is divided into eight modules,
i) Input Section, ii) Input Handler, iii) Formatted HTML
Parser, iv) Modified RDF Builder, v) Structured Data
Extractor, vi) HTML Representer of Structured Data,
vii) HTML Regenerator and finally viii) User Interface.
Before understanding the core of the system, it is required
to clear the idea about Modified RDF, RDF and HTML
in the context of the proposed framework. A schematic
diagram of the framework is shown in Figure 1.

The following framework has been designed based on
ontologies16,17. Two ontologies have been developed for
the experiment. The excerpt of the statements from both
ontology files are shown in Figure 2 and Figure 3.

4.1  Modified RDF
In the context of the proposed framework, Modified RDF
represents the RDF (Resource Description Framework)

Figure 1.  Schematic Diagram of the Proposed Framework.

A Framework for Generation of RDF Data from HTML

Indian Journal of Science and TechnologyVol 8 (16) | July 2015 | www.indjst.org 4

Figure 2.  (a) Code Snippets from HTML Ontology of Elements, (b) Code Snippets from HTML Ontology of Attributes.

Figure 3.  (a) Code Snippets from HTML Ontology_struct of Elements, (b) Code Snippets from HTML Ontology_struct of
Attributes.

Arup Sarkar, Subha Koley, Ujjal Marjit and Utpal Biswas

Indian Journal of Science and Technology 5Vol 8 (16) | July 2015 | www.indjst.org

statements to describe the syntactical information of a
dataset, such as a static HTML file. Generally, RDF has
been used to describe the raw data semantically. These
semantic descriptions are the collection of RDF state-
ments.

Normally, those RDF statements represent only the
key information. Most of the time, the semantic web
developers and researchers are concerned only about this
key information or structured data. In the context of the
static HTML pages, the meaning of structured data is
exactly the same, that is, the key information from which
further information is deduced. However, an HTML page
not only holds the data to display but it also holds some
syntactical information which tells how that information
should be displayed. This syntactical data normally get
ignored during the processing of HTML pages to extract
the key information and to represent them in RDF for-
mat. It is possible to represent this RDF data in HTML
representation but it will never look same as before. It is
impossible to get back the original HTML representation
just like the originating source. In this article, Modified
RDF is introduced to bridge the gap. Basically, Modified
RDF is the RDF representation of complete HTML page
including all information, even the syntax related descrip-
tion.

The hierarchy of the nested HTML tags, their attributes,
texts between the tags and also their order of occurrences,
every bit of information is preserved. Modified RDF is
described as the backup of original source HTML file
using RDF statements. Although the use of Modified RDF
is limited due to the presence of huge number of blank
nodes18. Too much blank nodes incur difficulties during
the execution of ‘SPARQL’ queries, since complexity of
the RDF statements highly increased. Reduction of this
unwanted complexity is a challenging task. However, if it
is reduced and SPARQL queries start running smoothly,
then only use of Modified RDF solves both the problems
of backup of HTML pages as well as extracting meaning-
ful key information from the HTML pages on the fly.

4.1.1  �Problems Related to Blank Nodes
Blank nodes19,20 do not really represent any node within
a RDF graph. However, this kind of assumption does not
reflect the complete truth about the blank nodes. Actually
blank nodes represent ‘things’ within a RDF graph
which may exist without an identity or name. Besides,
blank nodes are still required to refer inside the graph to

maintain the consistency i.e. the proper SPO (Subject-
Predicate-Object) structure of all the RDF statements.
As mentioned before they don’t possess a proper iden-
tity or name that is why their processing is difficult while
squeezing further information.

 Blank nodes help to make a RDF graph consistent
while also makes it complicated for processing. Huge
number of blank nodes within a graph grows the com-
plexity of SPARQL queries. In addition to that, they may
get failed to execute successfully. Sometimes, presence
of blank nodes becomes a problem while parsing. Due
to this reason, it is preferred to avoid the blank nodes as
much as possible. However, it seems quite useful and dif-
ficult to avoid their use.

4.2 � The Proposed HTML-to-RDF (H2R)
and RDF-to-HTML (R2H) Framework

The proposed framework has been divided into multiple
modules and sub-modules. The following description
about the framework has been started from the bottom-
to-top. The first module at the bottom is called the ‘input
section’. This module consists of four components which
represent the initial elements to continue the processing
further through the framework. They are usual target
‘HTML File’ and ‘HTML Reader’ to read the entire HTML
content out of it. Next one is the original HTML ontology
that already mentioned in the section of Modified RDF.
The fourth component of this module is the ‘Vocabulary
Generator’. This Vocabulary Generator is important in
terms of programming, since it helps to maintain the
actual list of RDF elements or vocabulary which will use
to describe the different parts of a HTML page.

4.2.1  Input Section
At the outset, this module performs the initiation pro-
cess of the system. It is comprised of the following four
components i) HTML File, ii) HTML Reader, iii) HTML
Ontology and iv) Vocabulary Generator.

The first component i.e. HTML File stands for the pri-
mary input to the system. This HTML page has to be used
to generate the Modified RDF. In addition, this file is used
to extract the structured data.

The HTML Reader reads the code from HTML page
or retrieves from the location of the HTML page over the
web. It holds all the data into the memory as an input for
processing in the next module, i.e. ‘Input Handler’.

A Framework for Generation of RDF Data from HTML

Indian Journal of Science and TechnologyVol 8 (16) | July 2015 | www.indjst.org 6

The Ontologies are represented by the component
HTML Ontology. The ontology files help to assist the
extraction process of structured data during the pres-
ence of different phases of the framework. At present
two different ontologies are generated. First ontology
‘HTMLOntology.owl’ generates the Modified RDF state-
ments from the raw HTML codes. The second ontology
‘HTMLOntology_struct.owl’ is used to generate the RDF
statements to describe the structured content extracted
from the HTML file/ Modified RDF. If required, external
ontologies may incorporate within the system.

Vocabulary Generator is important in terms of pro-
gramming the framework to develop the RDF statements.
During the generation of RDF statements different con-
cepts and properties are required and these are described
within the ontologies. While programming, these onto-
logical terms are difficult to incorporate directly from
the ontologies. Vocabulary Generator basically a pro-
gramming unit that generates a separate vocabulary of
references to each ontological term (i.e. concepts and
attributes) that helps during the development of RDF
statements.

4.2.2  Input Handler
This module is the composition of two components such
as ‘HTML Reformatter’ and ‘Regex Handler’. It is not

guaranteed that every input (HTML codes) will be in
correct format. The correct format inside the framework
assures that, every tag is well formatted, correctly opened
and closed. Every tag used in this framework is valid.
Within this framework, XHTML is preferred for every
HTML file. HTML Reformatter is responsible to make
every HTML file well formatted, so that this file becomes
usable without any problem. Besides, HTML Reformatter
performs one more action, and this action is performed
over reformatted i.e. the corrected HTML content. In this
phase of operation, it actually encapsulates all the tags
and text element within some specific and pre-formatted
string components so that every tags and every text ele-
ment from the HTML page can be easily identified. This
operation makes the application of Regex Handler easier.
An entirely re-formatted HTML source code is shown in
the following Figure 4.

The second component of this module is ‘Regex
Handler’. Although this component is placed in this mod-
ule, but it has huge potential of re-usability throughout
the framework. Regex Handler is completely based on
the use of regular expression. Regular expression is quite
useful and handy in certain situation while dealing with
different types of texts with a regular type of pattern.
Generally, Regular expression is proved to be powerful
tool of pattern matching for processing texts. In particu-
lar, such type of advantage of regular expression has been
used within framework through the Regex Handler. It
takes a target text as input and a regular expression, to
extract a certain portion from the input text according to
the pattern explained by the regular expression. On the
other hand, Regex Handler acts as an interface for the
other active components from various modules.

4.2.3  Formatted HTML Parser
This module is comprised of the following three separate
extractors: i) Tag Extractor, ii) Attribute Extractor and
iii) Text Extractor. All of these components are highly
dependent on the ‘Regex Handler’. The Tag Extractor is
responsible to extract all the HTML tags used through-
out the HTML page excluding any attributes. Extraction
of every attributes against every tag is the task assigned
to the Attribute Extractor. HTML tags tell the browser
how to represent some text within a page or how a web
page will overall look like. The main information about
the page is normally its text contents. So, it is important
to extract all the texts from the page. This is another task

Figure 4.  Sample Code Snippet of Formatted HTML
Code.

Arup Sarkar, Subha Koley, Ujjal Marjit and Utpal Biswas

Indian Journal of Science and Technology 7Vol 8 (16) | July 2015 | www.indjst.org

performed within this module by the component called
Text Extractor. All these extraction operations have been
performed by some preconfigured or predicted patterns
as it is already introduced within the page during the sec-
ond stage of operation of HTML Reformatter. Now, these
specific patterns are matched using regular expression
with the help of Regex Handler.

4.2.4  Modified RDF Builder
As mentioned in section 4.1, Modified RDF has been
introduced as a novel concept. The Modified RDF is the
RDF representation of an entire HTML page without
excluding any content from the pages. An efficient RDF
vocabulary or ontology is required to represent every
tags, attributes, and texts as RDF element. This is the place
where the HTML Ontology and the vocabulary generated
in module 1 is used.

Modified RDF Builder is divided into five compo-
nents, such as ‘Tag Generator’, ‘Attribute Generator’, ‘Text
Content Generator’, ‘Tag/Attribute Generator on the Fly’
and finally the ‘Hierarchy Maintainer’. Tag Generator gen-
erates the RDF statements to represent the HTML tags
into the Modified RDF. As similar as Tag Generator, the
Attribute Generator generates the RDF statements to Figure 5.  Excerpt of Code from a Modified RDF File.

Figure 6.  (a) Source HTML File, (b) Regenerated HTML File in Web Browser.

A Framework for Generation of RDF Data from HTML

Indian Journal of Science and TechnologyVol 8 (16) | July 2015 | www.indjst.org 8

represent the attributes of each HTML tags. In the simi-
lar way the Text Content Generator generates the RDF
statements to represent the normal texts come after the
HTML tags. Every element i.e. tags, their corresponding
attributes and the text contents all come in a certain order.
If the order gets changed, whole purpose of the Modified
RDF generation will be messed up. As a consequence the
next modules will not work properly. A complete record
of the hierarchy of all the tags, attributes, text contents
need to be preserved. The Hierarchy Maintainer does this
by contributing the ordering information of every HTML
element as RDF statement within the Modified RDF. That
is why it becomes easy to get back the original HTML
content from the Modified RDF. An excerpt of source
code from a Modified RDF file is shown in the following
Figure 5.

4.2.5  Structured Data Extractor
‘Structured Data Extractor’ extracts the actual struc-
tured data from the HTML pages as input. This module
is the second most important module after Modified RDF
Builder. Additionally, it is used to extract main key infor-
mation from the web pages, so that RDF statements can
be generated to make this information available to exploit
by the other existing semantic web applications as well as
for end user’s view.

4.2.6  HTML Representer of Structured Data
This module acquires the RDF data as input and sub-
sequently generates HTML code to represent the RDF
data as key-and-value pair format. It shows the RDF data
in user friendly HTML format so that any end user be
able to see the extracted RDF data as simple HTML page
through the web browser.

4.2.7  HTML Regenerator
Modified RDF acts as a back-up of the original HTML
page with the help of ‘HTML Regenerator’. HTML
Regenerator generates exactly same HTML code as of
the original input HTML page has. It accepts only the
Modified RDF file or its content as input to execute. An
example of original HTML file and its regenerated version
are shown in the following Figure 6.

In the above figures the left web browser window dis-
plays the original HTML page, whereas the right browser
window shows its regenerated version from the Modified
RDF file.

4.2.8  User Interface
User Interface has the following advantages:

•	 Prompt to input the location of target HTML file.
•	 Option to generate the Modified RDF file only.
•	� Option to generate the actual key structured data

in RDF format.
•	� Option to display the generated RDF data in

raw format using various serializations (i.e. N3,
NTRIPLES, Turtle, RDF/XML etc.) or in HTML
format.

•	 Option to display the Modified RDF.
•	� Option to regenerate the original HTML content

by quering Modified RDF as input.

5. � Implementation of the
Proposed Framework

Java platform has been chosen to develop the proposed
framework. Besides, Jena libraries have also been inte-
grated to handle the entire RDF related issues. The whole
implementation tasks are performed as follows.

In ‘Input Section’, the main HTML Ontologies have
been coded manually without any help of specific stan-
dard tool like Protégé. The RDF statements generated
through the framework uses the concepts and properties
described within the HTML Ontologies. A Java wrap-
per class has been designed to generate the vocabulary
of those concepts and properties from the above ontolo-
gies. The auto-generated vocabulary file is basically a Java
program, which has been applied along with the Jena21

libraries. Besides, the component called ‘HTML Reader’
has also been implemented to read the HTML content
(source code) from a given link. To implement the HTML
Reformatter, another well-known Java API called JTidy22
has been applied. It provides different options to check
the consistency of the codes within the input HTML page.
It also caters the provision to make the input HTML file
more consistent with the HTML/XHTML specifications.
Before acquiring any HTML file as input, it is concisely
checked either they are already semantically annotated by
the use of different semantic web technologies in terms
of RDFa, Microformats etc., or not. Normally, pre-anno-
tated HTML pages with semantic mark-ups remain ready
for the semantic web. The primary target of the frame-
work is the simple legacy HTML files that still exist on the

Arup Sarkar, Subha Koley, Ujjal Marjit and Utpal Biswas

Indian Journal of Science and Technology 9Vol 8 (16) | July 2015 | www.indjst.org

web of documents and are needed to expose semantically
over the semantic web.

A separate Java class has been developed for the Regex
Handler to handle the regular expression related prob-
lems. Additionally, Regex Handler reformats the tidied
(processed with JTidy) HTML file to add some predefined
string as shown in Figure 4.

In addition to above, a parser program has been writ-
ten to tackle the fully reformatted HTML file. The parser
helps to extract all the tags, their corresponding attri-
butes, and all the following texts in a specific order.

Another program has been developed to perform the
jobs of Modified RDF Builder, i.e. RDF statement genera-
tion for every tag, attribute, and text content including
information about their occurrence order in the source
HTML file. The program is also capable to generate RDF
vocabulary for any tag or attribute which is not described
in the ontology file. ‘Structured Data (RDF Statement)
Extractor’ is under experiment. ‘HTML Regenerator’
has been coded separately. Sixth and eighth module
i.e. ‘HTML Representer’ and ‘User Interface/ User API’
respectively are not fully implemented.

6.  Discussion
As discussed in the implementation section, the ontol-
ogy for the HTML tags and attributes have been coded
manually. However, development of the ontology through
advanced tools like Protégé is possible. In spite of that, it is
manually coded to reduce the complexity of the ontology
and to make it simple. A code snippet of the ontologies
are shown in Figure 2 and 3 using RDF/XML notation.

The job of the HTML Reformatter is to tidy up the
source HTML code as well as to add some predefined
strings to specifically identify the exact start and end posi-
tion of a tag or attribute. It is also required to identify the
position of texts occurs between the tags. It is better to call
these predefined strings as codes, because each of them
has a specific meaning. These codes are combination of
characters and numeric values. The character portion
reveals, it around a HTML tag or an attribute of HTML
tag or just a text content. The numeric parts notify about
their occurrence order. In the re-formatted HTML, two
types of codes have been used.

The code generation method uses the following rule:

 (1)

The above given expression is valid to generate the
codes for tag and attribute identification only. For normal
text content identification following rule has been fol-
lowed:

 (2)

As shown in the equation (2), the code has two parts,
one i.e. YI, at the left side of the “ : ” and XJ at the right
of it. The left part represents the text content and its
occurrence order within the hierarchy. The second part
expresses about its preceding HTML tag, the text content
actually trails after. In the Figure 4, the code [rft0:rbr2]
in the line 3 is around the first occurring text content
"Link Test" where right part of the code tells its preceding
HTML tag is encapsulated within the code [rbr2] which
is ‘<title>’. All these generated codes have been embedded
within square brackets.

7.  Conclusion and Future Works
The proposed framework deals only with the static
HTML pages. It completely excludes the web pages gen-
erated by any template or any pages generated through
CMS (Content Management System) based website. The
framework also considers only those HTML documents
as valid input for the system which is not semantically
annotated by any means.

The newly proposed concept of Modified RDF needs
to be explored in depth. At present it is acting like a backup
system for the original HTML documents in RDF format.
The main problem is that, the use of Modified RDF for
any other purpose is very difficult due to the excessive
presence of blank nodes inside the code.

Another important module of the framework is the
structured data extractor. The strategy followed here
is pretty much pre-mature, but justified due to its com-
plicated and very high heterogeneous nature. It is the
most challenging part of the framework, where further
research and development can be done. The other type
of strategies to extract key information, based on Natural
Language Processing (NLP), specifically sentiment analy-
sis of terms, frequency of occurrences of terms may play
key role here.

The proposed framework serves as a basic platform to
prepare any kind of legacy HTML pages for the seman-
tic web. We have plan in near future to include the CMS
based pages for this framework.

A Framework for Generation of RDF Data from HTML

Indian Journal of Science and TechnologyVol 8 (16) | July 2015 | www.indjst.org 10

8.  References
1.	� Berners-Lee T, Hendler J, Lassila O. The Semantic Web.

Scientific American. 2001 May; 29-37.
2.	� W3C Semantic Web Activity [Internet]. 2013 Jul 19 [cited

2014 Dec 12]. Available from: http://www.w3.org/2001/sw/
3.	� Yu L. Introduction to the Semantic Web and Semantic Web

Services. Boca Raton: Chapman & Hall/CRC; 2007.
4.	� RDF 1.1 Concepts and Abstract Syntax [Internet]. 2014 Feb

25 [cited 2014 Oct 22]. Available from: http://www.w3.org/
TR/rdf11-concepts/

5.	� Arasu A, Garcia-Molina H. Extracting structured data
from web pages. International Conference on Management
of Data (SIGMOD ‘03); 2003; San Diego, California, USA,
New York: ACM; 2003. p. 337–48.

6.	� Davulcu H, Koduri S, Nagarajan S. Datarover: a taxon-
omy based crawler for automated data extraction from
data-intensive websites. Proceedings of the 5th ACM
International Workshop on Web Information and Data
Management (WIDM ’03); New Orleans, Louisiana, USA,
New York: ACM; 2003. p. 9–14.

7.	� Cafarella MJ, Madhavan J, Halevy A. Web-scale extraction
of structured data. SIGMOD Record. 2008 Dec; 37(4):55–
61.

8.	� Cafarella MJ, Halevy A, Madhavan J. Structured data on the
web. Communications of the ACM. 2011 Feb; 54(2):72–9.

9.	� Myllymaki J. Effective Web Data Extraction with Standard
XML Technologies. Proceedings of the 10th International
Conference on World Wide Web (WWW’01); Hong Kong,
New York: ACM; 2001. p. 689–96.

10.	� Grigalis T. Towards automatic structured web data extrac-
tion system. In: Albertas AL, Dzemyda CG, Vasilecas
O, editors. Local Proceedings and Materials of Doctoral
Consortium of the Tenth International Baltic Conference
on Databases and Information Systems; 2012 Jul 8-11;
Vilnius, Lithuania, Vilnius: Zara; 2012. p. 197–201.

11.	� Yu L. A developer’s guide to the semantic web. Berlin,
Heidelberg: Springer; 2011. Chapter 10, DBpedia; p. 379–
08.

12.	� Wikipedia [Internet]. 2015 Jan 15 [updated 2015 Jan 15;
cited 2015 Jan 16]. Available from: http://en.wikipedia.org/
wiki/Wikipedia

13.	� The DBpedia Information Extraction Framework
[Internet]. 2014 Apr 11 [updated 2014 Apr 11; cited 2014
Dec 15]. Available from: http://dbpedia.org/documenta-
tion

14.	� DBpedia Live [Internet]. 2015 Jan 8 [updated 2015 Jan 8;
cited 2015 Jan 8]. Available from: http://wiki.dbpedia.org/
DBpediaLive

15.	� Morsey M, Lehman J, Auer S, Stadler C, Hellman S.
DBpedia and the live extraction of structured data from
Wikipedia. Program: electronic library and information
systems. 2012; 46(2):157–181.

16.	� Noy NF, Mcguinness DL. Ontology development 101: a
guide to creating your first ontology. Knowledge System
Laboratory, Stanford University; 2001 Mar. p. 24 Report
No: KSL-01-05

17.	� Gruber TR. Toward principles for the design of ontolo-
gies used for knowledge sharing?. International Journal of
Human-Computer Studies. 1995; 43(5–6):907–28.

18.	� Blank nodes [Internet]. 2014 Oct 17 [updated 2014 Oct 17;
cited 2014 Oct 22]. Available from: http://en.wikipedia.org/
wiki/Blank node

19.	� Milicic V. Problems of the RDF model: Blank Nodes. 2011
Jul 14 [cited 2014 Dec 15] In: Problems of the RDF model
[Internet]. Bew Citnames A blog by Vuk Milicic. Available
from: http://milicicvuk.com/blog/2011/07/14/problems-
of-the-rdf-model-blank-nodes/

20.	� Arenas M, Consens M, Mallea A. Revisiting Blank Nodes in
RDF to Avoid the Semantic Mismatch with SPARQL. RDF
Next Steps Workshop; 2010 Jun 26-27; Palo Alto, CA, USA,
Palo Alto: W3C.

21.	� Getting started with Apache Jena [Internet]. Apache
Software Foundation; 2011 [cited 2014 Dec 16]. Available
from: https://jena.apache.org/getting_started/index.html

22.	� JTidy - HTML PARSER AND PRETTY-PRINTER IN
JAVA [Internet]. 2014 [cited 2014 Dec 15]. Available from:
http://jtidy.sourceforge.net/index.html

