
Abstract
Realizing a distributed heterogeneous embedded system using I2C requires investigations and findings related to
 designing of networking, architecture, message design and flow for prioritization, and datagram design. The existing
methods for effecting communication among the heterogeneous embedded systems interconnected through I2C com-
munication system have not addressed the heterogeneity issues. To suffice, new methods for designing Heterogeneous
Embedded networks, communication systems, message flow systems and the message design have presented. The
methods have been applied to an existing distributed embedded system and the results obtained proved to be exact
as required. Every distributed embedded system is different and the kind of Hardware and protocol conversions
required is dependent on the type of distributed embedded system. It has been shown in the paper the kind of con-
versions that must be undertaken considering I2C as the communication method and a set of selected heterogeneous
embedded systems that are used for developing an application to monitor and control the temperatures within a
Nuclear reactor system. The way the communication must be effected is dependent on the number of masters and
the slaves that must be supported on the network. A communication system architecture that suits the pilot project
has been presented. A design flow method which uses priority queues has been presented to effect the communica-
tion according to the flow required. The design of datagrams required for effecting the communication has also been
presented in the paper.

I2C based Networking for Implementing
Heterogeneous Microcontroller based Distributed

Embedded Systems
J. K. R. Sastry*, J. Viswanadh Ganesh and J. Sasi Bhanu

Department of Electronics and Computer Science Engineering, KL University, Vaddeswaram,
Guntur District – 522502, Andhra Pradesh, India; drjkrsastry@gmail.com, jjvganesh@gmail.com,

sasibhanu@kluniversity.in

Keywords: Architecture, Distributed, Heterogeneous, Embedded, I2C, Message Flow

1. Introduction

Distributed computing architectures offer numerous
advantages in the development of complex devices and
systems. These advantages include well-defined interfaces,
flexible composition, streamlined integration, straight-
forward function-structure mappings, standardized com-
ponents, incremental testing, and other benefits.

Embedded systems are being extensively used in
monitoring and controlling various physical param-
eters. Embedded systems are reactive that they respond
to changes taking place in the external environment.

Almost all electronic gadgets (which include digital
 cameras, washing machines etc) are being operated using
an embedded system built into it. Embedded systems are
also being used these days as computing nodes connected
on to internet forming into internet of things.

Many embedded system based solutions are being
offered these days which require interconnecting of many
individual embedded systems. An automobile system as
such has in it many embedded systems which individu-
ally deals with controlling of breaks, doors, mirrors, rare
and front object indicators, engine temperature, wheel
speed, tyre pressure, DVD control etc. These individual

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(15), 68739, July 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

I2C based Networking for Implementing Heterogeneous Microcontroller based Distributed Embedded Systems

Indian Journal of Science and Technology2 Vol 8 (15) | July 2015 | www.indjst.org

 embedded systems are networked for providing
 information into a display unit which is fitted into a dash
board. The networking of the individual embedded sys-
tems must take into consideration various heterogeneous
ECU’s that are used for monitoring and controlling any
one of the aforesaid parameters. These days even multi
layered networking of embedded systems are being used,
each layer catering for a specific communication speed.
Serial bus based communication protocols which include
I2C, CAN, USB, and RS485 etc., are being used for inter-
connecting various embedded systems. Each type of
networking leading to different communication charac-
teristics such as baud rate, length of communication, bus
termination…etc.

In literature, many networking solutions have been
presented by using standard protocols for which native
support has been made available in some microcon-
troller based systems. However, many Microcontroller
based systems exists that do not provide support for a
native protocol, making it difficult to establish a seam-
less network. In a distributed embedded network
many heterogeneous embedded systems are used and
to connect them on to standard network, protocol
conversion would be required quite frequently which
generally through a problem of speed matching and
 synchronisation.

The standard protocols do not address any issues
related to networking heterogeneous microcontroller
based systems. Many distributed embedded applications
are in use today and each application requires that the
communication system be designed that meets the specific
requirements of a distributed embedded application. The
serial bus based communication systems offers generic
communication protocols which need to be customized
considering the distributed embedded application. Every
distributed embedded application is different in-terms
of the processing and communication requirements and
these needs to be addressed separately through specific
designs.

Controlling the flow of messages across the microcon-
troller based system is most important and the standard
protocols as such do not provide any support for that.
The message flow system must consider the sequence in
which the messages flow across the network connecting
the distributed systems. It is also necessary that transmis-
sion system that includes data communication must be
designed specifically for each of the distributed embedded
system individually.

1.1 Problem Definition
A distributed embedded system involves use of individual
microcontroller based systems. Each microcontroller
system may have built-in interfaces using which
 communication with other microcontrollers can be
achieved. Establishing communication among vari-
ous microcontroller based systems is essential to
implement a distributed embedded application. In a dis-
tributed embedded application both the hardware and
software that comprise entire application is distributed.
Communication is necessary among the microcontroller
based systems for exchanging of process information.

Networking of the microcontroller based systems
becomes one of the most important criteria in imple-
menting distributed embedded systems. The most critical
issue that must be considered to achieve the network-
ing of embedded systems is to address the heterogeneity
issue which includes interfaces, protocols, implementa-
tion of protocols etc. Networking of embedded systems
can be achieved in many ways using protocols such as
RS232C, RS485, RS422, SPI, FireWire, USB, CAN, I2C,
ETHERNET, PCI, and ESA etc. Among all, I2C bus based
serial communication protocols are used for establishing
a network connecting all the individual microcontroller
based systems. I2C is as such, a protocol which is fre-
quently used by the industry for effecting communication
among individual microcontroller based systems.

One of the major problems in implementing I2C
based system is due to lack of native support within some
of the microcontroller based systems. This requires fre-
quent protocol conversions. Every distributed embedded
system requires different communication system archi-
tecture and the very communication systems must be
customized for implementation of specific distributed
embedded system. No generic communication system as
such will meet the purposes of all types of distributed sys-
tems. Thus there is a requirement of finding mechanisms
and methods using which USB based communication is
used within the network of heterogeneous embedded sys-
tems and also design application specific communication
system architecture and the designing of the same con-
sidering various aspects of communication which include
addressing, configuration, transmission, reception, arbi-
tration, synchronization, error detection and control etc.

Design of message flow across various
 microcontroller based systems is equally important and
the same is to be achieved independently and specifi-
cally customised for each of the distributed application.

J. K. R. Sastry, J. Viswanadh Ganesh and J. Sasi Bhanu

Indian Journal of Science and Technology 3Vol 8 (15) | July 2015 | www.indjst.org

These requirements leads to implementation of
 distributed embedded systems, each designated to moni-
tor and control either the sensing or actuating mechanisms
with the need for the centralised coordination between the
distributed embedded systems. Figure 1 is the block dia-
gram that shows various decentralised embedded systems
with built-in respective interfaces along with an individual
embedded system that provides centralised coordination.

Some of the major requirements that must be met by the
distributed embedded applications are cited in the Table 1.

3. Related Work
Researchers at Santa Clara University (SCU) have
 proposed1 a distributed computing architecture for small
or multi-spacecraft missions. This architecture extended
existing I2C, Dallas 1-wire and RS232 data protocols and
was adaptable to a number of microcontrollers. Since
then, that architecture has been implemented on six uni-
versity-class space missions at three different universities.
Many types of architectures have been recommended by
the universities all aimed at developing I2C communica-
tion network connecting various types of Microcontroller
based systems. Each architecture is different and have con-
sidered different kinds of challenges related to project size,
scope and infrastructure. The details of three architectures
Akoya-A/Bandit-A and Akoya-B/Bandit-C, EMERALD
and ONYX at SCU and FASTRAC and ARTEMIS have
been presented. These architectures have shown the way
standard distributed embedded systems can be used to
develop custom specific I2C based networking systems.

I2C protocol has been an Industry standard being used
for implementing communication between I2C enabled
devices and the system. Many Microcontroller based
 systems have implemented native support for I2C. However
lot programming and knowledge of internal systems of

Even the data communication system must be designed
 independently.

2.   Specification Description 
of Distributed Embedded 
Application

Monitoring the temperatures within the nuclear reactor
tubes is one of the most important issues when it comes
to uranium enrichment. Sensors are mounted on to
the nuclear reactor tubes which are distantly situated.
Many temperatures at various points within each of the
Nuclear reactor tube must be sensed and it is also neces-
sary to maintain proper gradients across various points
at which the temperatures are measured. When tempera-
ture rises above some pre-defined levels, coolants have to
be injected into the tubes to bring the temperature down.
Pumps are used for injecting the coolants into the tubes.
The temperature sensing and implementing the actuat-
ing mechanisms that control the process of pumping is
achieved through various embedded systems. The opera-
tors must be alerted when the temperature gradient goes
beyond uncontrollable levels through asserting a buzzer
and lighting a pattern of LEDs as the case may be.

A historical database of temperatures sensed, pumping
levels implemented, temperature gradients, status of trig-
gering buzzer etc., are written on to a PC into a Database
for providing the historical evidences. Each part of sens-
ing and actuating requires a kind of response time and
therefore needs to be sensed, monitored and controlled
individually through a separate embedded system. There
is a need for coordinating the functions between the indi-
vidual embedded systems for achieving the sensing and
actuating in real time. This leads to the need for inter-
connecting the individual embedded systems that help
in establishing the communication between the embed-
ded systems which are individually responsible for either
sensing, actuating or monitoring the process taking place
within the Nuclear reactor system.

Designing, development and implementing the
Networking of embedded systems becomes one of the
most crucial issues when it comes to designing, devel-
opment and implementing the distributed embedded
systems. One of the major issues that must be addressed
is heterogeneity that exists among different types of
Microcontroller based systems which are used for devel-
oping and implementing different parts of a distributed
embedded system.

Figure 1. Top level view of a distributed embedded
system.

I2C based Networking for Implementing Heterogeneous Microcontroller based Distributed Embedded Systems

Indian Journal of Science and Technology4 Vol 8 (15) | July 2015 | www.indjst.org

microcontrollers which have provided internal support is
needed2. FPGA based implementation of networking of
the embedded systems is simple and straight forward. Any
Microcontroller based system can be configured as slave or
master on an I2C bus, by using FPGA based networking. The
solution however is not extendable and has not considered
many important issues related I2C based communication.

A three level protocol design has been considered
which include protocol level, signal level, and interface
level. The reusability of all the three level for each of the
new device that can be brought on to a network could
be undertaken3. Protocol level can be reused without the
need for any modification and the signal level re-usability
can be reused by setting the number of bytes to be trans-
ferred and the interface level can be achieved through
change of operating modes of the interface. The reusabil-
ity at the interface level is more complicated as it involves
change of operating modes. FPGA based implementation
of the interface level protocol makes it easier to imple-
ment reusability at this level. This design approach makes
the process of networking of embedded systems more
complicated in the name of reusability.

Table 1. Requirement specification of distributed
embedded application

Requirement
Number

Requirement Description

1. Read Temp-1 and write to LCD.

2.
Effect USB based communication between
the 89C51 (System-1) and the Central
Microcontroller (System-5).

3. Read-Temp-1 and send to Central Micro
Controller.

4.
Read Temp-1 and measure throughput.

Temperature-1 must be sensed at least 10
times per Milli second.

5.

Effect USB based communication between
the PIC18F4550 (System-3) and the Central
Microcontroller (System-5).
If Temp-1 > Reference Temp-1 then Pump-1
must be on.
If Temp-1 < Reference Temp-1 then Pump-1
must be off.
Compare Temp-1 > temp-2 and if true assert
buzzer on.

6.

Read Temp-1 and make buzzer off if < Temp-2.
If Temp-1 > temp-2 then Buzzer is on.
Response time of Temp-1 must be 10µ Seconds.
If Temp-1 > Reference Temp-1 then Pump-1
must be on.
If Temp-1 > Reference Temp-1 then Pump-1
must be off.
If Temp-1 > Reference Temp-1 then Buzzer is on.

7.
Response between the Reading the Temp-1
and stopping the Buzzer must 10µ Seconds.
If Temp-1 > Reference Temp-1 then buzzer off.

8. Read Temp-2 and write to LCD.

9.
Effect USB based communication between the
AT89S52 (System-2) and the Central Micro
Controller (System-5).

10. Read-Temp-2 and send to Central
Microcontroller.

11. Read Temp-2 and measure throughput.
Effect USB based communication between
the ATmega328 (System-4) and the Central
Microcontroller (System-5).

12. Read Temp-2 and make pump-2 on if Temp-2
> Reference Temp-2.
If Temp-2 > Reference Temp-2 Pump-2 on.

Requirement
Number

Requirement Description

13. Read Temp-2 and make pump-2 off if Temp-2
< Reference Temp-2.
If Temp-2 < Reference Temp-2 Pump-2 off.

14. Read Temp-2 and make buzzer on if >
Temp-1.
If Temp-2 > temp-1 Buzzer On.

15. Read Temp-2 and make buzzer off if <
Temp-1.
If Temp-2 > Temp-1 Buzzer On.

16. Response between the Reading the Temp-2
and starting the pump-1 must be 10µ Secs.
If Temp-2 > Reference Temp-2 Pump-2 On.

17. Response between the Reading the Temp-2
and stopping the pump-2 must be 10µ Secs.
If Temp-2 > Reference Temp-2 Pump-2 Off.

18. The response between the Reading the Temp-2
and starting the Buzzer must be 10µ Secs.

19. If Temp-2 > Reference Temp-2 Buzzer on.

20.
The response between the Reading the
Temp-1 and stopping the Buzzer must be 10µ
Secs.
If Temp-2 > Reference Temp-2 Buzzer off.

(Continued)

J. K. R. Sastry, J. Viswanadh Ganesh and J. Sasi Bhanu

Indian Journal of Science and Technology 5Vol 8 (15) | July 2015 | www.indjst.org

The embedded systems are highly optimized to
 perform limited duties of particular needs. They can be
control, Process, medical, signal, and image processing
applications. The challenges faced by embedded systems
are security, real-time, scalability, high availability and
also performance based interoperability as more and
more different devices are added to the systems. These
complex ubiquitous systems are glued together with layers
of protocols. Networking of these is a task to look for with
minimum flaws in manageability, synchronization and
consistency. A gateway has been presented4 to intercon-
nect various systems that support UART with SPI, I2C and
CAN Protocols. The gateway approach included another
level of complexity and the protocol conversion related
logics have to be implemented whether needed or not.

Another important research is in progress to inter-
connect two different networks say USB based and I2C
based networks. The mapping between I2C protocol and
the USB based protocol has been undertaken5. The hard-
ware design structure of the schematic mapping has been
presented. The gate way has been developed and pre-
sented considering the hardware design and the software
 architecture.

Many applications that include flight control, bank-
ing, medical, and other high assurance systems have a
strict requirement on correct operation. Fundamental to
this is the enforcement of non-interference between sub-
systems that are connected on to a network. In an effort
to help guarantee this policy, recent work has emerged
with tracking information flows at the hardware level. A
specific method known as Gate-Level Information Flow
Tracking (GLIFT) has been presented that tests informa-
tion flows in two common bus protocols, I2C and USB. It
has been shown that the protocols do elicit unintended
information flows and a solution based on Time Division
Multiple Accesses (TDMA) that provably isolates devices
on the bus from these flows6.

Several distributed architectures have been imple-
mented in the field of robotics7. A closed loop, real time
multi tasked controller has been implemented through
an asset of networked microcontroller based embedded
to be used in a robotic has been presented. The control
architecture is distributed in five microcontrollers with
master slave scheme. The master unit is dedicated for the
network management and the communication with the
user-interface.

The design of embedded board focuses on the posi-
tion control of the corresponding joint. An implementing

embedded control for brushless motor is established. I2C
protocol is implemented for the network management. A
user-interface for monitoring and control is developed.
The control is done through an USB communication
assured with compatible drivers on the three most popular
platforms (windows, Linux and Mac OS). The approach
is completely application specific and cannot be used for
any other purpose. The model did not discuss about the
information flow across the network.

In embedded system designing and managing com-
munication among various bus interfaces and attaching
multiple systems with different interfacing protocols to
a main processor has been one of the challenging tasks.
Popular serial interfacing protocols include: USB, I2C,
SPIISSP, CAN and UART is used for communication
between integrated circuits for low/medium data transfer
speed with on board peripherals.
 A platform has been presented for implementing
some of the serial protocols which are presented
by a low power 32-bit ARM RISC processor (LPC2148)8.
This approach literally leads to a centralized star based
topology and therefore is non extendable. Increasing the
length of the network is not quite possible.

I2C protocol provides easy communication with-
out data loss. It also gives excellent speed compared to
other protocols. I2C uses only two wires for communi-
cation. It is light weight, economical and omnipresent.
It also increases data transfer rate. A new protocol has
been developed that considers high speed communica-
tion through use of control registers inside the devices as
well as the data that can be saved into the internal reg-
isters. Using this process various control parameters can
be monitored and controlled9. The design method has
been implemented on a FPGA. This approach does not
 consider any heterogeneous issues.

Distributed computing architectures offer numer-
ous advantages in the development of complex devices
and systems. The design, implementation and testing of
a distributed computing architecture for low-cost small
satellite and multi-spacecraft missions which is composed
of a network of PIC microcontrollers linked together
by an I2C serial data communication bus has been pre-
sented10. The system also supports sensor and component
integration via Dallas 1-wire and RS232 standards. A con-
figuration control processor serves as the external gateway
for communication to the ground and other satellites in
the network. The processor runs a multitasking real-time
operating system and an advanced production rule system

I2C based Networking for Implementing Heterogeneous Microcontroller based Distributed Embedded Systems

Indian Journal of Science and Technology6 Vol 8 (15) | July 2015 | www.indjst.org

for on-board autonomy. The data handling system allows
for direct command and data routing between distinct
hardware components and software tasks. This capa-
bility naturally extends to distributed control between
spacecraft subsystems, between constellation satellites,
and between the space and ground segments. A technical
design incorporating various features has been presented.
This approach has used a single protocol system and has
not addressed any of the issues related to heterogeneous
implementation.

From the literature it can be seen that none have
attempted to establish distributed embedded networks
that takes into account the heterogeneous aspects of
various types of microcontroller based systems. Even
the design of message flow that is needed with a specific
distributed system has not been attempted. None have
discussed the communication architectures that consider
heterogeneous embedded system have not been discussed
in the literature.

4.  Investigations and Findings
4.1 Designing I2C based Networking for a

Heterogeneous Embedded System
I2C based networking is one of the methods that exists
today for establishing interconnecting various embed-
ded systems. I2C is frequently used protocol for
effecting communication between the Computing sta-
tions and peripheral devices and now even being used
for establishing a communication network that connects
various Microcontroller based systems. Many of the
Microcontroller based systems have no native support for
I2C while some have. Most of the Microcontroller based
system differs in many ways (word boundary, endian,
byte addressing, parity, word length, number of registers
etc). Networking such heterogeneous embedded systems
through a challenge and many innovative approaches are
required for establishing the networking of the same.

The generic way of connecting the heterogeneous
embedded systems is shown in the Figure 2.

An I2C based communication system helps in achiev-
ing a network interconnecting a set of heterogeneous
distributed embedded systems. Every distributed embed-
ded system is different and a dedicated network has to be
designed and developed. The designing of the networking
needs application specific requirements. The applica-
tion specific requirements related to the Nuclear reactor
 application are shown in the Table 1.

The central microcontroller system is expected to be in
a remote location. As per the description of the functional
requirements, the central microcontroller shall have to
act like a single master and the rest as slaves. The com-
munication between the master and the slave requires
a speed of 100Kbps to 1Mbps which allows the signals
to be driven to a distance of more than 1kms which is
a sufficient requirement of the distributed embedded
 application.

As per the functional requirements of an applica-
tion, LPC2148, a 32 Bit Microcontroller is used as a
master device for achieving communication between

Figure 2. I2C based Networking.

Table 2. Address allocation to the devices

Serial
Number
of Device

Type of
Device

Device
Model

Number

Allocated
Address

Transmission
Reception

Priority

Reason for
Assigning the

Priority

1. Master LPC2148 70 1
Master has the
priority over the
salves

2. Slave-1 89C51 60 2
Temp-1 flow
before other
messages

3. Slave-2 AT89S52 50 3

Temp-2 must
follow temp-1
in a fraction of
10µsec

4. Slave-3 PIC18F4550 40 4

Message to
pump-1 must
follow temp-2
within 20µsec

5. Slave-4 ATmega328 30 5

Message to
pump-2 must
follow the
message to
pump-1 within
10µsec

J. K. R. Sastry, J. Viswanadh Ganesh and J. Sasi Bhanu

Indian Journal of Science and Technology 7Vol 8 (15) | July 2015 | www.indjst.org

the slave devices. It consists of native I2C support. The
master device must also be designed to alert local user
through triggering a Buzzer about the variations tak-
ing place within the temperature gradients. The master
system must also be designed for interfacing with a
PC for communicating with it for obtaining the refer-
ence temperatures and transmitting the process data to
be stored in a database. 4 slave microcontroller based
devices which include 89C51, AT89S52, PIC18F4550
and ATmega328 have been considered for implement-
ing various functions that are projected as requirements
which include sensing temperature-1, sensing temper-
ature-2, starting and stopping pump-1, starting and
stopping pump-2.

Three of the Microcontroller based systems (LPC2148,
ATmega328 and PIC18F4550) have in-built I2C commu-
nication interface and the remaining two Microcontroller
based systems (89c51 and 89S52) have in-built RS232C
interface for effecting communication. These RS232C
interfaces are to be converted into I2C and vice versa using
the converter SP16IX752. The devices implements buffer-
ing techniques for converting a 19.2 Kbps speed which
is the maximum speed achievable through a RS232C
serial communication system into to 1Mbps speed. This
conversion is good enough as the amount of data to be
transmitted from a Slave to Master and Vice Versa is not
more than 18K bytes considering throughput for sensing
and transmission is not more than 9K temperatures/
second which is more than sufficient for the application
to be implemented. The designing of the I2C network con-
sidering the heterogeneous interfaces has been shown in
the Figure 3.

4.2 Designing Communication System
The networking diagram shown in the Figure 3 shows
the interfacing various heterogeneous microcontrollers
based systems which are interconnected through an I2C
based protocol system. However communication soft-
ware resident in different microcontroller based system
is required for achieving application specific messaging
requirements using the network designed for the purpose.
The communication has to be initiated by the master by
using RTR (Remote transmission request) for want of
Temperature-1 and Temperature-2 to be transmitted by
89c51 and AT89s52 in that sequence. The throughput,
sequencing and timing of receipt of the temperatures
are designed and developed into master device. The
applications on 89c51 and AT89S52 will have software

components to receive the master requests and transmit
the data to the master device. The communication com-
ponents implements RS232C serial communication
system for transmitting and receiving the temperature
data.

The master device at the start-up receives the refer-
ence temperatures from PC which is connected to the
master through RS232C serial communication system.
The sensed temperatures are compared with the reference
temperatures and in the event that the sensed tempera-
tures are more than the reference temperature a message
is sent to the Microcontroller based system that oper-
ates the pumps to be on or off. On the master side, two
individual software components for each of the pump
controller system shall have to be in place for transmis-
sion of the commands and reception of acknowledgement
that the intended pump operation has been achieved suc-
cessfully or otherwise. The communication in this case
is achieved through use of I2C interface. The software
components that are designed for effecting the commu-
nication between the master and the pump control slave
devices is achieved through implementation of the I2C
protocol. The master also is provided with a component
that computes the temperature gradient and asserts a
buzzer or otherwise if the temperature gradient is beyond
the prescribed limits. This function as such requires no
communication as the entire functioning is implemented
within the master device. The software architecture that
depicts the application specific communication is shown
in the Figure 4.

Figure 3. USB based Networking for Nuclear reactor
system.

I2C based Networking for Implementing Heterogeneous Microcontroller based Distributed Embedded Systems

Indian Journal of Science and Technology8 Vol 8 (15) | July 2015 | www.indjst.org

4.3 A Novel Message Flow Design Method
In I2C based communication, one of the connected
devices has been fixed as the master even though I2C
 supports multiple masters. Every communication is initi-
ated from the master.

Every slave is assigned with an address right in the
beginning through assigning address values to a memory
location through an application running at the slave side.
The address as such has no priority assigned for hav-
ing preference to communicate over the network. The
addresses assigned do dictate the flow of control of the
data on the network as per the distributed application
requirement. The addresses assigned to the slaves are pre-
decided and coded into the individual slave applications.
The design of the addresses that can be allocated to the
salves is shown in the Table 2.

However the messages between the master and the
slaves need to flow in a fixed pattern meaning as per pre-
fixed priorities. The Table 2 shows the priorities to the
message flow across the master and the salves. The com-
munication software running on the master, will post a
message as per the priority to a circular queue and the
circular queue handler will despatch the messages as per
the queue in circular fashion. The working of the cir-
cular queue based dispatching system for effecting the
flow of control of messages as required by the distrib-
uted embedded application is shown in the Figure 5.

Table 3. Flow of data from Master Microcontroller
(LPC2148) to Temparature-1 Microcontroller (89C51)

Start
bit

Slave
Address

R/W Acknowledgement Data
bits

Stop
bit

1bit 0111100 0 1 bit 2 bytes 1 bit

4.4 Design of Data Flow for
Communication

For the TMCNRS system which connects 5
Microcontroller based systems through I2C, Only one
Microcontroller acts as master and the rest as slaves.
Communication takes place both ways between the
master and the slaves. The flow of data between the
master and the salve have been designed considering
the requirements as stated in the Table 1 related to the
pilot project cited in this paper. The data flows have been
shown in the Tables 3 to 10.

Table 4. Flow of data from Temparature-1
Microcontroller (89C51) to Master Microcontroller
(LPC2148)

Start
bit

Slave
Address

R/W Acknowledgement Data
bits

Stop
bit

1bit 0111100 1 1 bit 2 bytes 1 bit

Table 5. Flow of data from Master Microcontroller
(LPC2148) to Temperature-2 Microcontroller (89S52)

Start
bit

Slave
Address

R/W Acknowledgement
Data
bits

Stop
bit

1bit 0110010 0 1 bit 2 bytes 1 bit

Table 6. Flow of data from Temperature-2
Microcontroller (89S52) to Master Microcontroller
(LPC2148)

Start
bit

Slave
Address

R/W Acknowledgement Data
bits

Stop
bit

1bit 0110010 1 1 bit 2 bytes 1 bit

Figure 4. Communication system Architecture.

compared with the reference temperatures and in the event that the sensed temperatures are more
than the reference temperature a message is sent to the Microcontroller based system that operates
the pumps to be on or off. On the master side, two individual software components for each of the
pump controller system shall have to be in place for transmission of the commands and reception
of acknowledgement that the intended pump operation has been achieved successfully or
otherwise. The communication in this case is achieved through use of I2C interface. The software
components that are designed for effecting the communication between the master and the pump
control slave devices is achieved through implementation of the I2C protocol. The master also is
provided with a component that computes the temperature gradient and asserts a buzzer or
otherwise if the temperature gradient is beyond the prescribed limits. This function as such
requires no communication as the entire functioning is implemented within the master device. The
software architecture that depicts the application specific communication is shown in the Figure 4.

I2C Tran – T1

I2CRecv – T1

I2C Tran –
T2

I2CRecv –
T2

RS232C
Tran – PC

RS232C
Recv – T1

I2C Tran –
P1

I2C Recv –
p1

I2CTran – P2

I2C Re
cv – p

2

RS232C
Tran – PC

RS232C
Recv – T1

PC
Application

M
A
S
T
E
R
A
P
P
L
I
C
A
T
I
O
N

RS232C
Tran –T1

RS232C
Recv – T1

T1
Application

I2C Tran –
P1

I2C Recv –
P1

P1
Application

RS232C
Tran –T2

RS232C
Recv – T2

T2
Application

I2C Tran –
P2

I2C Recv –
P2

P2
Application

Figure 4. Communication system Architecture.

4.3. A Novel Message Flow Design Method

In I2C based communication, one of the connected devices has been fixed as the master even
though I2C supports multiple masters. Every communication is initiated from the master.

Every slave is assigned with an address right in the beginning through assigning address values to
a memory location through an application running at the slave side. The address as such has no
priority assigned for having preference to communicate over the network. The addresses assigned
do dictate the flow of control of the data on the network as per the distributed application
requirement. The addresses assigned to the slaves are pre-decided and coded into the individual
slave applications. The design of the addresses that can be allocated to the salves is shown in the
Table 2.

However the messages between the master and the slaves need to flow in a fixed pattern meaning
as per pre-fixed priorities. The Table 2 shows the priorities to the message flow across the master
and the salves. The communication software running on the master, will post a message as per the

Figure 5. Priority based message dispatching method.

J. K. R. Sastry, J. Viswanadh Ganesh and J. Sasi Bhanu

Indian Journal of Science and Technology 9Vol 8 (15) | July 2015 | www.indjst.org

that communication has taken place exactly as required
considering the I2C network which is connected by using
the heterogeneous interfaces.

6.  Conclusion
I2C communication system is an effective protocol for
 networking of heterogeneous microcontroller based
systems. Reasonable speeds of communication can be
achieved using the I2C. A I2C network must be designed
specific to a distributed embedded system considering
the type of microcontroller that must be used for imple-
menting the distributed embedded system. A specific
architecture must also be determined for implementing
a communication system that is suitable to a distributed
embedded system. I2C protocol system does not support
priority based message management system and there-
fore it became necessary to investigate a method and
implement the same for a specific distributed embedded
system.

The I2C protocol provides standard communication
system. It does not prescribe any message flow system
as required by a specific distributed embedded system.
The messages must flow in a sequence as per a defined
order. Addresses assigned to the device do not provide
for any kind of preference for the device. The message
flow system has been designed and implemented within
a master designated microcontroller based system. Data
must flow from one system to other as per the standard
data structures as described by I2C communication pro-
tocol. The data structures that have been specifically
designed for the application has been implemented in
this paper.

Table 7. Flow of data from Master Microcontroller
(LPC2148) to Pump-1 Microcontroller (PIC18F4550)

Start
bit

Slave
Address

R/W Acknowledgement Data
bits

Stop
bit

1bit 0101000 0 1 bit 2 bytes 1 bit

Table 8. Flow of data from Pump-1 Microcontroller
(PIC18F4550) to Master Microcontroller (LPC2148)

Start
bit

Slave
Address

R/W Acknowledgement
Data
bits

Stop
bit

1bit 0101000 1 1 bit 2
bytes 1 bit

Table 9. Flow of data from Master Microcontroller
(LPC2148) to Pump-2 Microcontroller (ATMEGA328)

Start
bit

Slave
Address

R/W Acknowledgement Data
bits

Stop
bit

1bit 0011110 0 1 bit 2 bytes Bit

Table 10. Flow of data from Pump-2 Microcontroller
(ATMEGA328) to Master Microcontroller (LPC2148)

Start
bit

Slave
Address

R/W Acknowledgement Data
bits

Stop
bit

1bit 0011110 1 1 bit 2
bytes

Bit

Table 11. Experimental results

Tran ID

From To

Whether
Checksum
error exists

Micro-
Controller

System

Micro-
Controller

System
Address

Number of
bytes Sent

Micro-
Controller

System

Micro-
Controller

System
Address

Number of
bytes

Received

1 89C51 0111100 2 LPC2148 1000110 2 No

2 AT89S52 0110010 2 LPC2148 1000110 2 No

3 LPC2148 1000110 1 PIC18F4550 0101000 1 No

4 LPC2148 1000110 1 ATmega328 0011110 1 No

5.  Experimental Results

Experiments have been conducted making data flow from
one Microcontroller to the other and the results obtained
are shown in the Table 11. It could be seen from the results

I2C based Networking for Implementing Heterogeneous Microcontroller based Distributed Embedded Systems

Indian Journal of Science and Technology10 Vol 8 (15) | July 2015 | www.indjst.org

7.  References
1. Swartwout M, Kitts C, Stang P, Lightsey EG. A standardized,

distributed computing architecture results from three uni-
versities. 19th Annual AIAA/USU Conference on Small
Satellite; 2005. p. 1–16.

2. Venkateswaran P, Mukherjee M, Sanyal A, Das S, Nandi R.
Design and implementation of fpga based interface model
for scale-free network using I2C bus protocol on quartus II
6.0. International Conference on Computers and Devices
for Communication; 2009. p. 1–4.

3. Hu ZW. I2C protocol for reusability. 3rd International
Symposium on Information Processing; 2010. p. 83–6.

4. Rahim BA, Rajan KS. Multi-protocol gateway for embed-
ded systems. Int J Adv Eng Tech. 2011; 1(4):86–93.

5. Zhao F, Deng D, Wang Z, Liu H. Design of schematic map-
ping system based on I2C and usb bus. IEEE Conference
Publication; 2011. p. 180–3.

6. Oberg J, Hu W, Irturk A, Tiwari M, Sherwood T, Kastner
R. Information Flow Isolation in I2C and Usb. ACM. 2011;
254–9.

7. Bouterra Y, Chabir A, Mansour AB, Ghommam L.
Development and implementation of a real time system for
distributed control of laboratory robot. IEEE Conference
Publication. 2014; 1–5.

8. Kommu A, Kanchi R. Designing a learning platform for the
implementation of serial standards using arm microcontroller
lpc2148. IEEE International Conference on Recent Advances
and Innovations in Engineering (ICRAIE); 2014. p. 1–6.

9. Mankar J, Darode C, Trivedi K, Kanoje M, Shahare P.
Review of I2C protocol. International Journal of Research
in Advent Technology. 2014; 2(1): 474–9.

10. Palmintier B, Kitts C, Stang P, Swartwout M. A distributed
computing architecture for small satellite and multi-space-
craft missions. 16th Annual AIAA/USU Conference on
Small Satellites; 2015. p. 1–11.

