
Abstract
In this paper, we propose a method to distinguish healthy people from those suffering from Parkinson’s disease using 
foot pressure data, Fast Fourier Transform (FFT), and Principal Component Analysis (PCA). We applied an FFT based on 
the Hamming method to extract frequency ranges of pressure data from the left and right feet of subjects. We used PCA 
to reduce the dimensions of features generated by FFT. A neural Network with Weighted Fuzzy Membership functions 
(NEWFM) was used to distinguish healthy subjects from those with Parkinson’s disease. Our method yielded accuracy, 
specificity, and sensitivity values of 75.90%, 61.41%, and 81.09%, respectively. 
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1. Introduction
Parkinson’s disease is a representative degenerative brain 
disease caused by a lack of dopamine, a neurotransmitter 
secreted in the substantia nigra, a region of the midbrain. 
Clinical symptoms of the disease include resting tremors, 
rigidity, bradykinesia, postural instability, etc. Analyses of 
figure motion3 and foot pressure4,8 have been used for the 
diagnosis of Parkinson’s disease based on bradykinesia. 
Some of these involved statistical methods to distinguish 
healthy subjects from those diagnosed with Parkinson’s 
disease based on foot pressure4,8. References 4,8 have no 
general rules. Thus, there may be different classification 
results from their point of view.

In this study, we report the results of an experiment 
to distinguish healthy subjects from those diagnosed with 
Parkinson’s disease based on foot pressure data using 
neural Networks with Weighted Fuzzy Membership func-
tions (NEWFM)5,6. In order to extract the features to use 
as input to NEWFM, we collected foot pressure data from 
the left and right feet of our subjects in the first stage. In 
the second stage, we divided the frequency ranges of the 
pressure data from both feet obtained in the first stage into 
bandwidths using a Fast Fourier Transform (FFT) based 

on the Hamming method. In the third stage, between one 
and 15 dimensions were extracted from the bandwidths 
generated in the second stage using Principal Component 
Analysis (PCA). In the fourth stage, 15 types of data items 
were entered from one to 15 dimensions, such as one 
dimension, one to two dimensions, one to three dimen-
sions, and so on. In the fifth and final stage, we used from 
one to 15 dimensions as inputs to NEWFM and obtained 
the accuracy measure of each entry. The highest accuracy 
was obtained when one to eight dimensions were used as 
input to NEWFM. We proposed eight fuzzy membership 
functions in order to interpret the eight features used in 
this study5,6.

2.  Experimental Data and 
Preprocessing

2.1 Experimental Data
For our experiment, we used experimental data provided 
by PhysioBank. The data were collected from 93 subjects 
diagnosed with Parkinson’s and 73 healthy subjects using 
sensors attached to the subjects’ soles, eight on each foot. 
We collected 92 items of experimental data from the 73 
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healthy subjects and 214 items of experimental data from 
the 93 subjects diagnosed with Parkinson’s. Approximately 
two minutes’ worth of continuous data were saved in the 
individual experimental data. The frequency of the saved 
experimental group data was 100 Hz. 

As shown in Table 1, data collected at any given time 
required 19 inputs. We used the sum of the 18th input and 
the 19th input for the experiment. The experimental group 
data shown in Table 2 were extracted from the sum of the 
18th and the 19th input, and were composed of 2,048 sums 
of the two inputs. For the experiment, we allocated 210 
data items from healthy subjects and 487 data items from 
those with Parkinson’s disease to each of the training and 
the testing set, as shown in Table 2.

2.2 Fast Fourier Transform
The Fast Fourier Transform (FFT) was developed as an 
algorithm to rapidly generate a Discrete Fourier Transform 
(DFT). FFT was developed to reduce the number of cal-
culations required for DFT, and quickly generates DFT 
by eliminating repetitive calculations in DFT equations. 
FFT can be divided into algorithms that separate the time 
and the frequency regions. We carried out a Hamming 
method-based FFT to decompose the 2,048 data items, 
which constituted the groups shown in Table 2, into 1,024 
frequency regions.

2.3 Principal Component Analysis
The objective of Principal Component Analysis (PCA) is 
to describe the entire change using m principal compo-
nents by means of the first-order combination of p given 
(measured) parameters, and to rank the components 
in order of their contribution to the explanation of the 
change. In this study, we extracted from one to 15 com-
ponents using PCA from the 1,024 features generated 
by FFT.

3.  Neural Network with Weighted 
Fuzzy Membership Function 
(NEWFM)

A neural Network with Weighted Fuzzy Membership 
function (NEWFM) is a supervised classification neuro-
fuzzy system that uses the Bounded Sum of Weighted 
Fuzzy Membership functions (BSWFMs)5,6. The structure 
of a NEWFM, shown in Figure 2, consists of three layers: 
input, hyperbox, and the class layer. An hth input pattern 
can be recorded as Ih = {Ah = (a1, a2, … , an), class}, where 

Table 1. Explanation of measured data

Input Order Explanation
The first input Time
The second till 
the ninth input

8 data items collected from the sensors on 
the left sole shown in Figure 1

The 10th to the 
17th input

8 data items collected from the sensors on 
the right sole shown in Figure 1

The 18th input The entire input data collected from the 
left sole

The 19th input The entire input data collected from the 
right sole

Table 2. The experimental groups used for the 
identification of subjects with Parkinson’s disease

Class Training Set Test Set Total Number
Parkinson’s disease 487 487 974
Healthy people 210 210 420 
Total Number 697 697 1394

Figure 1. Pressure data collected through the sensors on 
the sole.
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class is the result of the classification and Ah is a set of n 
features of an input pattern. One to 15 dimensions gener-
ated by the PCA were used as input in this study, as shown 
in Figure 2. The hyperbox layer consists of m hyperbox 
nodes. Each hyperbox node Bl, which is to be connected 
to a class node, contains n BSWFMs for n input nodes. 
The output layer is composed of p class nodes. Each class 
node is connected to one or more hyperbox nodes. An 
hth input pattern can be recorded as Ih = {Ah = (a1, a2, … , 
an), class}, where class is the result of the classification and 
Ah is a set of n features of an input pattern. 

The connection weight between hyperbox node Bl and 
class node Ci is represented by wli, which was initially set 
to 0. From the first input pattern Ih, wli was set to 1 by the 
winner hyperbox node Bl and class i in Ih. Ci should have 
one or more connections to hyperbox nodes, whereas Bl 
is limited to only one connection to a corresponding class 
node. Bl can be learned only when it is a winner for input 
Ih, with class i and wli = 1. 

As shown in Figure 3, the weight and the center of 
each membership function were adjusted during the 
learning process, e.g., W1, W2, and W3 moved down, v1 
and v2 moved toward ai, and v3 stayed in the same location. 
Following learning, each of n fuzzy sets in the hyperbox 
node Bl contained three “weighted fuzzy membership 
functions” (WFMs, the membership functions in gray in 
Figure 4). The “bounded sum” (an operation on the fuzzy 
set) of WFMs (BSWFM) in the ith fuzzy set of B xl
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the highest accuracy among the one to 15 dimensions 
extracted by PCA. These represent the BSWFM described 
in 5. Using these, the difference in foot pressure between 
healthy subjects and those with Parkinson’s was visu-
alized and accordingly analyzed with respect to eight 
 dimensions.

In Equation (2) below, TP (true positive) indicates 
cases where subjects with Parkinson’s were correctly 
 identified based on foot pressure data, TN (True 
Negative) indicates cases where healthy subjects were 
correctly identified, FP (False Positive) denotes cases 
where subjects with Parkinson’s were incorrectly identi-
fied as healthy subjects, and FN (false negative) denotes 
cases where healthy subjects were incorrectly identified 
as subjects with Parkinson’s using foot pressure data. 
The performance of Back Propagation (BP)7 and that of 
NEWFM are compared in Tables 3, 4, 5, and 6. Tables 
3 and 4 show the confusion matrix of the classification 
results of BP and NEWFM, respectively. Tables 5 and 
6 show the accuracies, specificities, and  sensitivities 
obtained using BP and NEWFM, respectively, and 
defined in Equation (2):

 
Sensitive y TP

TP FN
=

+
×100

 Sensitive y TN
TN FN

=
+

×100  (2)

 
Accuracy TP TN

TP FN TN FP
= +

+ + +
×100

5. Conclusion
In this study, we proposed a method to identify people 
with Parkinson’s disease by applying a Hamming meth-
od-based FFT to foot pressure data. We extracted 1,024 
features for each frequency region, and then reduced them 
to eight dimensions using PCA. The reduced data were 
then used as input to NEWFM, which was used to distin-
guish healthy subjects from those with Parkinson’s disease. 
Using our method, a system to distinguish healthy people 
from those with Parkinson’s disease can be  developed by 
measuring and processing foot pressure data in real time.
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