
Abstract
The paper proposes for the mathematical modelling surfaces of celestial bodies by the given radar data use the models, 
produced from the geometrical metamodel G. The metamodel G consists of the corresponding to the dimensions of a 
space geometrical objects (points, lines, surfaces), the mathematical methods of interpolation, interlinations, interflata-
tion, and the set of rules for producing mathematical models. Using the metamodelling approach allows us to consider 
from a unique point of view the different methods for the modelling surfaces of bodies and also to develop a computer tool 
which accelerates and simplify the modelling process, starting from the problem specification and finishing visualization 
and interpretation of the obtained solution. The correctness of the derived from the metamodel G the set of the models M1, 
M2 ... MN results from the correspondence of the structure of the model objects of G to the structure of experimental data, 
 recorded in the process of radiolocation as values of the functions in the points, and traces of the functions on the given 
lines and surfaces.
Widely used in cartography Digital Elevation Model (DEM), can be also produced from G by using for the description of 
the bodies the surfaces in the form of triangles. Using the metamodel G allows us to integrate the DEM method for the data 
specification with setting data in points and on lines (which are the basic objects of the metamodel G) and so apply more 
precise (comparatively with the classical interpolation) methods of interlination and interflatation of functions.
Another advantage of the proposed metamodelling approach is a possibility of development of complex geometrical 
 models by composition of the basic elements of the metamodel. As an example, the paper proposes a new method for  the 
reconstruction of the surface of a celestial body by the data, given on the system of strips – interstripation (form the inter 
– in between – of the strips).
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1. Introduction

The most used on practice for description of the surfaces 
of Earth and other celestial bodies is the Digital Elevation 
Model (DEM)1, sometimes referred as the Digital Terrain 
Model (DTM)2. The idea of DEM is a replacement of a sur‑
face of a celestial body by multifaceted surface, where each 
face is a triangle. The coordinates of the vertices of these 
triangles are set by the researcher in the process of radio‑
location sensing. Within each of the triangle, the structure 
of the investigated part of the surface of the Earth or other 
body is considered as homogeneous. Note, that practice 

often needs a more accurate description of a surface within 
such the triangle, which size can be rather big.

In addition, there is certain inconsistency of DEM to 
the experimental data, derived from a radar (or sonar). 
Inclusion in the DEM of experimental data, having a dif‑
ferent geometrical structure, generally speaking, is not 
a trivial task. For example, this concerns the use in the 
description of such the typical elements of the Earth’s 
surface, as the banks of rivers or seas. The reason is that 
their inclusion in the description of the surface requires 
processing of each triangle (a face of the multifaceted 
 surface) in the DEM separately.
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the radiolocation data are given on the system of strips, 
located on the surface of such the body. That is why the 
development of the method for reconstruction of a body 
surface accordingly to the data, specified on the system of 
strips (the interstripation) is a challenging task.

In general, these strips may overlap, be located at 
 different angles, as also be received at different moments 
of time. For example, when “Magellan” spacecraft mapped 
Venus3, its radar scanned the same part of the surface 
at different turns with a time interval of several tens of 
months; during this time Venus was heavily destroyed by 
an earthquake, or better say, “venusquake”. Thus, the state 
of a specific part of the surface can have a large devia‑
tion from the state, which was recorded on the same strip 
 during the movement of the spacecraft via one of the 
 previous turns.

Given examples shows that use of the metamodel 
G, we discuss in details in the next sections of the 
paper, is entirely natural for specification and process‑
ing radiolocation data. This is primarily due to the 
structure of the  experimental data used in computer car‑
tography. Consequently, the problem of generalization of 
approaches to modelling surfaces of bodies in the frame‑
work of the metamodel G, that includes DTM as a special 
case, is relevant.It gives the opportunity for more accurate 
description of surfaces of planets and other celestial bod‑
ies, both through the use of geometrical objects, which 
more closely match the available experimental data, and 
the application of modern mathematical methods for 
approximation of functions of many variables ‑ interlina‑
tion and interflatation of  functions4.

2. Formulation of the Problem
The paper proposes for processing radiolocation and 
sonar data use the mathematical models of the surface, 
derived from the geometrical metamodel G. Metamodel 
G consists of the set of the model objects {P, L, S}, where 
P is the point, L is the line, S is the surface; the math‑
ematical methods {Op, Ol, Of} applicable to these model 
objects, where Op is the operator of interpolation, Ol 

– the 
operator of interlination, Of 

– the operator of interflata‑
tion, and the rules for generating models M1, M2 ... MN  
from G.

The feature of the proposed metamodelling approach 
is defining the metamodel G at two levels ‑ formal (math‑
ematical) and visual (geometrical), i.e. as a set of graphical 
objects, which are used for manipulation and visualization 

Figure 1 shows an example of mapping an ocean floor 
using sonar.

The lines x = x k =1, Mk 1( )  and y = y i =1, Mi 2( )  

here are the courses of the ship with sonar, z = f(x,y) is 
the equation of the surface of the ocean floor that needs 
approximate reconstruction. From this example follows 
the natural use of geometrical lines, as carriers of the 
experimental sonar data, and, actually, the neediness of 
inclusion of the line model object in the metamodel G.

Another important example is the mapping a  celestial 
body surface using a radar (see Figure 2). In this case, 

Figure 2. Mapping the surface of a celestial body using 
radar data.

Figure 1. Mapping the ocean floor using sonar data.

 

Surface of an ocean 

Bottom of an ocean 
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of the metamodel elements. These levels of the metamodel 
definition are given to the user through GUI of a corre‑
sponding software tool5. For example, changing a location 
of a visual object on a screen will change its radius‑vector, 
defined at a formal level.

Note, that use for the modelling of such the basic 
 geometrical objects like point, line and surface, has been 
the subject of multiple discussions in the scientific litera‑
ture, starting from the work “Discourse on Method” of 
René Descartes, first published in 16376. The different 
levels of the definition of these objects, i.e. the geometri‑
cal and the analytical, exactly the basis of the method of 
Descartes’ coordinates. On the base of the René Descartes 
approach, Isaac Newton and Gottfried Leibniz later 
 created the differential and integral calculus.

Let’s note here works of Ukrainian academician 
Vladimir Rvachev(see e.g.7), which also are based on the 
Descartes’ approach. In his works, V. Rvachov expanded 
the method of Descartes with functions of many vari‑
ables, properties of Boolean functions, and k‑ary logic. It 
gave the possibility to develop the common method for 
 building equations of shapes with complex boundaries.

In our case we combine the theories of  mathematical 
modelling with metamodelling approach of computer 
science, used for software systems development.

In8 we propose the metamodelling architecture 
for modelling domains having different mathematical 
structure. It allow us to develop metamodel for model‑
ling multi‑dimensional domains9. Another application is 
development and application of metamodels as integrated 
logical and algebraic systems10.

In this paper we expand the metamodelling approach 
of software engineering and show, that it can be used not 
only for generating program code, but also for develop‑
ment of solutions of complex mathematical problems. 
Here, we consider metamodel as a model of mathemati‑
cal models. The approach allows us to find a general and 
more effective solutions by definition of a new level of 
 abstraction lying behind existing model abstractions. 
Such the metamodel produces a set of domain models 
(in the context of this paper, the models of surfaces of 
 bodies).

New models are developed by putting constraints 
on the geometrical structure of the metamodel elements 
(for example, from the line, we produce the line segment, 
from the surface ‑ the triangle, the strip, etc.) and  by 
their  composition, i.e. by development of more complex 
 models from the basic elements of the metamodel.

We write the relationship between metamodel and 
derived models as G ⇒ M, where the models M is the set 
of {{P1, P2...PA}, {L1, L2,...LB}, {S1, S2,...SC}}, where

{P1, P2...PA}–the set of points,
{L1, L2,...LB}–the set of lines,
{S1, S2,...SC}–the set of surfaces,
A + B + C = N–the total number of objects.

Each object of the set {{P1, P2...PA}, {L1, L2,...LB}, {S1, 
S2,...SC}} is a carrier of the mathematical properties, here, 
the distribution of radar or sonar data. Important that 
these specific models use the operators {Op, Ol, Of}, which 
are the significant part of the metamodel G.

3. Materials and Methods
The problems of building maps of surfaces of celestial 
bodies on the base of the given radar data is relevant both 
from a practical and a theoretical point of view.

In the proposed metamodel G, the information about 
the surface ∑, the map of which we want to create, is spec‑
ified by the values of the unknown function of two z = f (x, 
y) or three Φ (x, y, z) = 0 variables in the specified system 
of points {P1, P2...PA}; its traces on the specified system of 
lines {L1, L2,...LB}; and its traces on some planes or  surfaces 
{S1, S2,...SC} (generally speaking, curvilinear).

For the more precise recovery of the function, we 
need also take into account an existing additional infor‑
mation about studied surface (the class of smoothness of 
the surface, its closeness to the known surfaces ‑ planes, 
spheres, cylinders, etc.). Use of the metamodel allows us 
to build the computer tools that automate and simplify 
application of many mathematical methods (for example, 
automatically switch from the Cartesian to the spheri‑
cal or the cylindrical system of coordinates). The surface 
can also be nothing else than a digital snapshot of a body. 
In this case, the computer tool allows us to consider the 
 surface, as a function of two variables.

3.1  Characteristic of the Metamodel 
Operators

Operators of the metamodel G are the formulas of 
spline‑interpolation, spline‑interlination and spline‑
interflatation4. Interlination (interflatation) of functions 
of many variables we call the reconstruction (possibly, 
approximate) of this function by using their tracks and 
traces of their derivatives up to the given order on the 
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 system of lines (or surfaces, respectively). Interlination 
and interflatation of here functions is a natural gener‑
alization of interpolation, which is reconstruction of 
(possibly, approximate) the function by using its values 
and its derivatives up to some order on the specified sys‑
tem of points.

Interflatation of the function f (x1,...,xn) of n variables 
using the function traces (or traces of its derivatives up to 
the given order ≤ N) on M surfaces of the dimension m is 
a reconstruction (possibly approximate) of the function f 
at the arbitrary points of the domain.

If m = 0 then this approximation is a generally known 
interpolation of a function by its values in M points (for 
n ≥ 1).

If m = 1 (for n ≥ 2), then this approach is called an 
interlination (sometimes, blending function  interpolation) 
on M lines.

Here are the key statements about restoration of 
 functions of many variables using operators of interlina‑
tion and of interflatation of functions. Interflatation of 
functions can be used:

In the methods for solving Linear or Nonlinear •	
Integro‑Differential Equations (LIDE or NIDE);
For solutions of boundary value problems for differ‑•	
ential equations with partial derivatives, which bring 
a boundary problem for the areas of complex form to 
the systems of ordinary LIDR or NIDR; 
In the theory of approximation of functions;•	
In the digital processing multidimensional signals;•	
In computer tomography;•	
At describing the surfaces of automobiles, ships, •	
 aircrafts, space bodies, etc.;
In cartography.•	

Let’s give existing and introduce some new definitions 
using common mathematical symbols.

Let’s n M m N, , ,∈ ∈ −N N
0

 are the given numbers, 

∏k ,k = 1,M  are the given m – directional surfaces in 
Rn (0 ≤ m < n). We will assume for convenience that 
the point is also the surface of the dimension m=0, and 
the line is the surface of the dimension m=1. In addi‑
tion, we assume the given functions φk,p(x), k M= 1, , 
p N= 0, ,  which are the traces of operators Lk,p f(x) of 

the function f(x) (generally speaking, unknown), i.e. 
jk p k pk k

L f k p N, ,( ) | ( ) | , , , , .x x M∏ ∏= = =1 0  Operators Lk,p 

f(x) may be partial derivatives or the normal derivatives 

L f f v p Nk p
p

k
p

k k, ( ) | ( ) / | , ,x x∏ ∏= ∂ ∂ = 0  for the case of m 
= n –1 etc. (vk is the normal vector to ∏k).

Definition 1. Operators O Oj jk p k p k k px L x, , ,, : , , , .{ }( ) = { } ∏{ } { }( )
O Oj jk p k p k k px L x, , ,, : , , , .{ }( ) = { } ∏{ } { }( ) we call operators of interflatation if L O xl q k p l ql l, , ,({ }, ) | ( ) | , , .j j∏ ∏= x l = 1,M q = 0,N

L O xl q k p l ql l, , ,({ }, ) | ( ) | , , .j j∏ ∏= x l = 1,M q = 0,N
. 

If m = 0, then ∏k∈Rn are the points in Rn traces can 
be values of the function f (x) and its partial derivatives 
at these points. Then O ({φk,p}, x) are operators of inter‑
polation in M points. If m = 1, n ≥ 2, then ∏k are the 
lines in Rn and operators O ({φk,p}, x) are the operators of 
 interlination on these lines.

Definition 2. Let x = (x1,...,xn)

 
O xk p

l

M

q

N

l q k p l({ }, ) ({ }, ) ,, , , ,j jx x h q= ∑ ∑ ( )
= =1 0

γ

Where hl,q(x) = hl,q ({Lk,p}, {∏k}, {x)‑ are some  system of 
auxiliary functions that do not depend on the approxi‑
mating function f(x) and Υl,q ({φk,p}, x) = Υl,q ({Lk,p, {∏k}, 

{φk,p}, x) are the linear operators from the functions jk p k M p N, , , , , .= =1 0 

jk p k M p N, , , , , .= =1 0  Then we will call operators O ({φk,p}, x)  

Table 1. The formal definition of the metamodel G

The concept of the 
metamodel

The type of information that allows to specify the 
concept of the metamodel

Approximating method of the 
metamodel

Point The value of the function f(x1, …, xn) and its derivatives 
(up to the given order) at the specified points

Interpolation of functions of one or 
more variables n(n≥1)

Line Traces of the function f(x1, …, xn) and its derivatives  
(up to the given order) on the specified lines

Interlination of functions of two or 
more variables n(n≥2)

Surface
Traces of the function f(x1, …, xn) and its derivatives 
(up to the given order) on the specified surfaces of 
dimensionality m(0≤m≤n−1)

Interflatation of functions of three or 
more variables n(n≥3)
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the linear operators of interflatation  (interpolation, 
interlination). Otherwise, these operators we will call 
a non‑linear operators of interflatation  (interpolation, 
interlination).

Definition 3. Let the auxiliary functions hl,q(x) = hl,q ({Lk,p}, 
{∏k}, x) are rational, polynomial, trigonometric functions 
or a spline‑functions, or functions that are built using 
R‑functions7, etc. Then we will call operators O ({φk,p}, x) 
the operators of rational, polynomial, trigonometric, spline‑
interflatation (interpolation, interlination).

Definition 4. If f (x) ∈Cr (Rn), r ≥ N ≥ 1and O ({φk,p}, 
x)∈Cr (Rn), then operators O ({φk,p}, x) are called opera‑
tors, which preserve the class of differentiation Cr (Rn), 
to which the approximation function f (x) belongs. Else 
operators O ({φk,p}, x) are called operators, that do not 
preserve the class of differentiation Cr (Rn), to which the 
approximation function f (x) belongs.

Definition 5. If ∃ ≠∏ ∏l q L Ol q k q l ql l
, : ({ }, ) | ( ) | ,, , ,j jx x  then 

the operators O ({φk,q}, x) are the operators of  rational, 
polynomial, trigonometric, spline‑approximation.

Here are some formulas that used to build the  operators 
of the metamodel (interlination and of  interflatation of 
functions). 

3.2  Operators of Interlination Without Saving 
Class of Differentiation Cr(R2), r ≥ 1

3.2.1  Operators of Rational Interlination on M 
Lines

Let n = 2 and ∏ = + − = = + =k k k k k k
a

kx b x k M a b: ( ) : a , , , ,w gx 1 2
20 1 1 

∏ = + − = = + =k k k k k k
a

kx b x k M a b: ( ) : a , , , ,w gx 1 2
20 1 1

j gk s
s

k
s s

k
s

k k kf v f v
k, ( ) / ( ) | / ( ( a ) / b )x x x x= ∂ ∂ = ∂ ∂ −∏ 1 1  if 

b v a bk k k k k≠ = ∇ = ( )0; ( ) ,w x

or j gk s
s

k
s s

k
s

k k k kf v f v
k, ( ) / ( ) | / (( ) / , ) if ,x x b x a x a= ∂ ∂ = ∂ ∂ − ≠∏ 2 2 0 

j gk s
s

k
s s

k
s

k k k kf v f v
k, ( ) / ( ) | / (( ) / , ) if ,x x b x a x a= ∂ ∂ = ∂ ∂ − ≠∏ 2 2 0

 
O f

sk N
s

N

k s k k
k
s

, ,( ) ( ( ) ( ))
( )
!

,x x x x
x

= ∑ − ∇
=0

j w w
w

H x Nk
i
i k

M

i
N

l

M

i
i l

M

i
N( ) = ∏ ∑ ∏ = +

=
≠

∗

= =
≠

∗ ∗

1 1 1
1w w( ) / ( ) ,x x N if  N = 2q +1,,

q ∈ = + = ∈∗N N
0 0

2 2; , , ;N N if N q q

Theorem 1. If at any point intersect no more than two 
lines, ∏k and ∏1 then the operator

 
O O fM N k s k

k

M

k N k N, , , ,({ },{ }, ) ( ) ( )j ∏ = ∑
=

x x H x
1

has the property

∂ ∏ ∂ = = =∏ ∏
s

M N k s k k
s

k sO k M s N
k k, , ,({ },{ }, ) / ( ) | ( ) | , , , ,j jx v x x 1 0

Comment 1. If ∏ =k k: ( ) ,w x k = 1,M0  is an arbi‑
trary set of lines or surfaces in the Rn, n ≥ 2 and
∂ ∂ = =∏

p
k k

p
pv

k
w d( ) / | , p , ,,x N0 0  the assertion of the the‑

orem 1 remains in force, in condition, that at one point 
intersects no more, then n lines or surfaces (with n > 2).

3.2.2  Polynomial, Trigonometric and Spline-
interlination on a Set of Mutually 
Perpendicular Straight Lines

Let G I I x x kk k Mk
= = = < < = =2

00 1 0 1 1 2, [ , ], , , ;, ,

∂ ∂ = ( )= −
sk

k
sk

x x k i s kf x
k k ik k k

( ) / | ,
, , ,x x j 3

 

B f x h x hk
i

M

s

N

i s k M N s k M i s
k

k

k
k k k k k k k

( ) , (, , , , ,
(q)x = ∑ ∑ ( ) ( )

= =
−

0 0
3j xxk j q i i j k k kk k

q s N i j M, , ,) , , , ; , ,= = =d d 0 1 

B f x h x hk
i

M

s

N

i s k M N s k M i s
k

k

k
k k k k k k k

( ) , (, , , , ,
(q)x = ∑ ∑ ( ) ( )

= =
−

0 0
3j xxk j q i i j k k kk k

q s N i j M, , ,) , , , ; , ,= = =d d 0 1 h N s xM k kk , , ( )  are the 
basis system of functions of one variable for polynomial, 
trigonometric or spline interpolation.

Theorem 2. Operators Of(x)–(B1 + B2 – B1B2)f(x) have the 
following properties:

∂ ( ) ∂ = ∂ ( ) ∂ = =

= =

p
k
p p

k
p

k k i

k k

Of x x Of x x x x p N

i M k
k

/ / , , , ,

, , , ,
, 0

0 1 2

In addition, if R12 f(x) := (I – O)f(x) — the final  member 
of the approximation function f(x) operators Of(x),  
then

R12 f(x) := (I – O)f(x) = (I – B1)(I – B2)f(x),

It follows that the R12 f(x) = O(ε)2, if (I – Bk)f(x) = O(ε), 
ε → 0, k = 1, 2.

3.2.3  The Cost Saving Schemes for Calculations 
of Operators of Polynomial, Trigonometric 
and Spline Interpolation, Obtained 
by using the Appropriate Operators of 
Interlination

In general, these operators have the form Of x B B B B( ) = + −( )1 2 1 2 
Of x B B B B( ) = + −( )1 2 1 2 . Operators B f xk ( ) are obtained from  
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operators Bk f(x) by using the following  replacement 

ji s k i s kk k k k
x x, ,3 3− −( ) ≈ ( )Φ  in Bk f(x), where Φi s kk k

x, 3−( )  

are polynomial, trigonometric, or spline‑interpoliants 

having the properties j ei s k i s k Ck k k k
x x O, , , . .3 3

2
− −( ) − ( ) = ( ) =Φ  

j ei s k i s k Ck k k k
x x O, , , . .3 3

2
− −( ) − ( ) = ( ) =Φ

Theorem 3. Operators of interpolation Of x( ) use fewer 
amount of the values of function f(x), than the classical 
operators B1B2 f(x) (at condition that they approximate 
f(x) with an error O(ε2)).

3.3  Operators of Interlination and 
Interflatation of Functions with Saving 
Class Cr(Rn), r ≥ 1

If at restoring the surface of the body not only values of 
the approximating function are used, but also values of 
its derivatives up to the order N ≥ 1, then it is recom‑
mended to use the interlination operators for functions, 
preserving the class of differentiation Cr(Rn), r ≥ 1 , to 
which the approximating function belongs. The theory of 
 constructing such the operators can be found in4. 

Note, that operators for spline interpolation of func‑
tions of three variables, built using operators of spline 
interflatation of function on the system of mutually 
perpendicular planes, have very high accuracy, in com‑
parison with the classical spline interpolation operators. 
Therefore, we will focus more on the formulas for their 
construction. 

4.  Operators for 3D 
Interpolation, are Built 
with the Operators of 3D 
Interflatation

Let 

f x C I r u x f x

i M k

r r r
k i x i M

k

k k k
( ) ∈ ( ) = ( ) = ( )
≤ ≤ =

=
, ,

, /, , , | ,

, ,

3 1 2

0 1 3

L f u x h Mx i h t

t t t

k M
i

M

k i k k
k

k, ,( ) ,

/

x = ∑ ( ) −( ) ( )
= − − + +( )

=0

1 2 1 2

Theorem 4. Operators Of(x) = (L1, M + L2, M + L3, M – L1, M L2, 

M – L1, M L3, M – L2, M L3, M + L1, M L2, M L3, M)f(x) have the prop‑

erties Of x f x j M kx j M x j M kk k k k
( ) = ( ) = == =| | , , , , ,/ / 0 1 3

f Of O M u C I rr r r r− = ( )∀ ∈ ( ) =−3 3 1 2, , , ,

Theorem 5. We make replacement u1, i1(x) = f(i1/M, x2, 
x3)≈

u x f i M j M j M h M x ji
j

M

j

M

1 1 2
3 2

3
3

00

3 2
2 21

3

3

2

3 2

,
/ // , / , /

/

( ) = ( ) −( )
==

∑∑ hh M x j

f i M j M j M h M x j h M x
j

M

3
3 3

1 2
3

3
3 2

0

3
2 2

3 2

3

3 2

−( )

+ ( ) −( )
=

∑ / , / , / / /
/

33 3
0

1 2
3 2

3
3 2

0

3 2
2 2

2

3

3

3 2

−( )

− ( ) −(
=

=

∑

∑

j

f i M j M j M h M x j

j

M

j

M

/ , / , // / /
/

)) −( )
=

∑
j

M

h M x j
2

3 2

0

3 2
3 3

/

/

Similar replacements will do to for other functions of 
one and two variables in Of. We then get operator Of x( ), 
which has the properties:

1) f Of M r− = ( )−0 3 ;

2) Of x( ) Uses Q M M M O M= +( ) +( ) +( ) = ( )6 1 1 13 2 3 5 5/ .   
values of the function f. Note that the classic 3D spline 
interpolation operators L L L f xM M M1 2 33 3 3, , , ( )  piece‑
wise‑linear on each of the three variables have the 
same error and use Q n O nclassic = +( ) = ( )3 3 91  values 
of the function f.

Similar assertions also hold for the approximation 
 operators of blended approximation using experimental 
data on the system of mutually perpendicular lines.

5. Results and Discussion
Let’s consider the mathematical methods of recovery of 
the body surface based on radar data given on systems 
of crossed strips. The proposed method significantly uses 
operators of spline‑interlination and spline‑interflatation 
of functions of two variables.

Suppose, we have a system of strips S x y i n a x b y c a bi i i i i i i i i i: , , , , : , .a w b w≤ ( ) ≤ = = + − + =1 12 2

S x y i n a x b y c a bi i i i i i i i i i: , , , , : , .a w b w≤ ( ) ≤ = = + − + =1 12 2  Consider also  

known the surface reliefs S : z = f(x, y) ∈ C(R2)above each 

strip: f x y
f x y S

x y S
i

S i

i

i,
, ,

, ,
,, ,( ) =

( ) ∈

( ) ∉






=

if

if0
1i n.

By this information we need restore (possibly, 
 approximately) the function f(x, y). This problem occurs, 
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in particular, in mapping the surface according to the radar 
data, received from the satellite, that moves over the ter‑
ritory S by fixed paths (obviously, that radiolocation data 
covers the strips along the path). Below is one of the pos‑
sible approaches to the solution of the  problem.

First of all, when all the strips are parallel and have 
only shared borders (i.e. there is no overlay)

S x y i ni i i i n= ≤ ( ) ≤ = − ∞ < < ∞+ +a w a a a, , , , ,1 1 11 

this problem has a trivial solution, its operator is  developed 
as 

O f x y f x y x y S i ni k k{ }( ) = ( ) ( ) ∈ =: , , , , , , .1

So let’s consider the general case. We introduce the 
following notation:

S S Sk p k p, ,= 

f x y f x y f x y f x yk p S k
S

p Sk p
p k

, , , , , ,
,

( ) = ( ) = ( ) = ( )

Ωi

i i i i

i i i

i i i

x y
x y x y

x y
x y x

,
, , ,

, ,
,

,( ) =
( ) − ( ) <

≤ ( ) ≤

( ) −

w a w a
a w b

w b w
0

,, y i( ) >







 b

G x y x y x y i ni j
j j i

n

j
j j k

n

k

n

, , , , , .
, ,

( ) = ( ) ( ) =
= ≠ = ≠=
∏ ∏∑Ω Ω2

1

2

11

1

Obviously,

G x y
p i
p i

G x yi S i
i

M

p
,

, ,
, ,

, .( ) =
=
≠ ( ) =





 =
∑1

0
1

1

These properties of the functions Gi(x, y) provide the 
ability to prove the following theorem.

Theorem 6. Operator O({ fi}; x, y) =

= ( ) ( ) − ( ) ( ) ( )
≠=

∑∑G x y f x y G x y G x y f x yi i k p k p
Si

n

k p

, , , , ,,
, 01

has the properties:

f x y C R i n f x y C Ri i, , , ; , ;( ) ∈ ( ) = ⇒ { } ∈ ( )( )2 21 0

O f x y f x y q ni S q Sq q
{ }( ) = ( ) =; , , , , .1

Proof. We write for q n= 1,

O f x y G x y f x y

G x y G x y f x y

i S i i
i

n

S

k p k p

q
q

{ }( ) = ( ) ( )

− ( ) ( ) (

=
∑; , , ,

, , ,,

1

))

= ( ) + ( )

− ( )

≠

= ≠
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∑
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f x y f x y
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,

, ,

,

,
,

,
,

0

1

1 qq

n

S

q S

q

q

f x y∑ = ( ), .

Theorem is proven.
So, the operators O({ fi}; x, y) gives the possibility to 

recover an unknown surface in the points between the 
strips by the information, given on these strips.

For the better approximation, we should take in mind 
that the functions f x y i ni , , ,( ) = 1  can be defined as a set 
of photos along the strip, and these pictures may over‑
lap, i.e. have the common subdomains, not only common 
borders.

This means that to build f x y i ni , , ,( ) = 1 , in the 
points R2, we might want to use anti‑aliasing algorithms, 
not only the algorithms that exactly restore a surface of 
the specified subdomain on the strip Si, i n= 1, . In addi‑
tion, it is necessary to be able to continue the function 
f x y i ni , , ,( ) = 1  outside the border of strips.

 Here is one possible algorithm for such the continu‑
ation. Let the strip Si has the local coordinate system 
w ti i i i i i ia x b y c b x a y: , : .= + − = − +  Then the function, 
here wi = wi (x, y)

f x y

f x y x y S

f x y bi

i i

i i i i i i i i,

, , , ,

, ,( ) =

( ) ( ) ∈

− −( ) − −( )( ) <w a a w a w aii

i i i i i i i i if x y b

,

, ,− −( ) − −( )( ) >








 w b a w b w b

is continued on R2 and f x y f x yi i i, , , ( , ) .( ) = ( ) ∈x y S

6. Conclusion
This paper discussed the metamodel G, which allows 
us to consider from a unique point of view the diff er‑unique point of view the diff er‑point of view the differ‑
ent approaches to development models of a surface of a 
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body. Producing such the models from the metamodel G 
is appropriate due to the correspondence of the structure 
of the model objects of G to the structure of experimental 
data, obtained from a radar or a sonar.

The proposed metamodel G uses for the mathemati‑
cal modelling the operators that restore the function  
f(x, y) by given traces of the function and their deriva‑
tives on a system of points, lines and surfaces. Using 
operators of interlination, interflatation and blended 
approximation leads to more accurate results than gave 
us the classical operators of polynomial, trigonometric, 
spline interpolation and approximation. Thus, to achieve 
the same accuracy of approximation we can use less, than 
in classical methods, number of experimental data.

The new mathematical method for restoring the sur‑
face of the body is proposed, which is based on radar 
data, given on a system of intersecting strips. This method 
significantly uses operators of spline‑interlination and 
spline‑interflatation of the functions of two variables.
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