
Abstract
A lot of work has been done in parallelizing nested loops with uniform dependences, from dependence analysis to loop
transformation. Loops with non-uniform dependences are not so uncommon in the real world. This paper proposes an
­efficient method of splitting and transforming nested loops with irregular and flow dependences for maximizing ­parallelism.
Our approach is based on the Convex Hull theory that has adequate information to handle irregular ­dependences, and
also based on minimum dependence distance tiling methods. We will first show how to find the incrementing minimum
­dependence distance. Next, we will propose how to tile the iteration space efficiently according to the incrementing ­minimum
dependence distance. Finally, we will show how to achieve more parallelism by loop interchanging and how to transform it
into parallel loops. Comparison with some other methods shows more parallelism than other existing ­methods.

A Loop Splitting Method of Irregular and Flow
Dependence Loops

Sam-Jin Jeong*

Division of Information and Communication Engineering, Baekseok University, Korea; sjjeong@cheonan.ac.kr

Keywords: Flow Dependence, Irregular Dependence, Loop Transformation, Parallelizing Compiler

1.  Introduction

Automatic transformation of a sequential program into a
parallel form is a subject that presents a great intellectual
challenge, and at the same time promises a large practical
reward. On one hand, there is a tremendous investment
in existing sequential programs that we would like to run
with ever increasing speed. On the other hand, scientist
and engineers continue to write their application pro-
grams in sequential languages, and keep demanding
higher and higher speedups. Over a period of several
decades, much research has been done on using restruc-
turing compilers to enable the parallel execution of
sequential programs1.

Example l.		 Example 2.
do i = 1, 10		 do i = 1, 10

do j = 1, 10	 do j = 1, 10
A(i+1, j) = . . .	 A(2*i+3, j+1) = . . .
. . . = A(i, j-1)	 . . . = A(2*j+i+1, i+j+3)

enddo		 enddo
enddo		 enddo

Example 3.
do i = 1, 10

do j = 1, 10
A(2*i+ j+1, i+j+3) = . . .

. . .= A(i+4, 2*j+3)
enddo

enddo
According to an empirical study2, nearly 66% of the

array references have linear or partially linear subscript
expressions and 45% of two dimensional array refer-
ences are coupled and most of these lead to irregular
dependences.

Example 1 is loop with uniform dependences. The
dependence vector of Example 1 is (1, 1) as shown in
Figure 1(a). In the same fashion, we call some depen-
dences non-uniform when dependence vectors are in
irregular and complex patterns that cannot be expressed
by distance vector. Figure 1(b) shows the dependence pat-
terns of Example 2 in the iteration space. An example given
in Example 3 illustrates the case that there is irregular
and flow dependence. Figure 1(c) shows the dependence
patterns of Example 3.

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(13), IPL015, July 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

A Loop Splitting Method of Irregular and Flow Dependence Loops

Indian Journal of Science and Technology2 Vol 8 (13) | July 2015 | www.indjst.org

This paper will focus on parallelizing perfectly nested
loops with irregular and flow dependences.

2. � Data Dependence Analysis
in Irregular and Flow
Dependence Loop

The loop model considered in this paper is doubly
nested loops in Figure 2, where f1(I, J), f2(I, J), f3(I, J), and
f4(I, J) are linear functions of loop variables. Both lower
and upper bounds for loop variables should be known at
compile time.

The loop carries cross iteration dependences if and
only if there exist four integers (i1,j1,i2,j2) satisfying the sys-
tem of linear diophantine equations given by (1) and the
system of inequalities given by (2). The general solution to
these equations can be computed by the extended GCD8
and forms a DCH.

The loop model considered in this paper is doubly
nested loops with linearly coupled subscripts and both
lower and upper bounds for loop variables should be
known at compile time. The loop model has the form in
Figure 2.

The dependence distance function d(i1, j1) in flow
dependence loops gives the dependence distances
di(i1, j1) and dj(i1, j1) in dimensions i and j, respectively. For
uniform dependence vector sets these distances are con-
stant. But, for the irregular dependence sets these distances

are linear functions of the loop indices. We can write these
dependence distance functions in a general form as

d(i1, j1) = (di(i1, j1), dj(i1, j1))� (1)

	 di(i1, j1) = p1
*i1 + q1

*j1 + r1

	 dj(i1, j1) = p2
*i1 + q2

*j1 + r2

where pi, qi, and ri are real values and i1 and j1 are integer
variables of the iteration space.

The dependence distance function d(i1, j1) can be
represented by direction of the dependence. Figure 3
shows all possible flow dependence directions in doubly
nested loops.

The dependence direction is written as d = (i, j), where
i is the value of di(i1, j1) and j is the value of dj(i1, j1). From
Figure 3, we know that there are possible flow dependence
directions as follows.
a   i = 0 and j > 0,
b   0 < i < j,

Figure 1.  Iteration spaces of (a) Example 1, (b) Example 2, (c) Example 3.

 2

j

i
(a)

j

i
(a)

j

i
(b)

j

i
(b)

Figure 1. Iteration spaces of (a) Example 1, (b) Example 2, (c) Example 3

Example 1 is loop with uniform dependences. The dependence vector of Example 1 is (1, 1) as shown
in Figure 1(a). In the same fashion, we call some dependences non-uniform when dependence vectors
are in irregular and complex patterns that cannot be expressed by distance vector. Figure 1(b) shows
the dependence patterns of Example 2 in the iteration space. An example given in Example 3
illustrates the case that there is irregular and flow dependence. Figure 1(c) shows the dependence
patterns of Example 3.
This paper will focus on parallelizing perfectly nested loops with irregular and flow dependences.

2. Data Dependence Analysis in Irregular and Flow Dependence Loop

The loop model considered in this paper is doubly nested loops in Figure 2, where f1(I, J), f2(I, J), f3(I,
J), and f4(I, J) are linear functions of loop variables. Both lower and upper bounds for loop variables
should be known at compile time.

The loop carries cross iteration dependences if and only if there exist four integers (i1,j1,i2,j2)
satisfying the system of linear diophantine equations given by (1) and the system of inequalities given
by (2). The general solution to these equations can be computed by the extended GCD8 and forms a
DCH.

The loop model considered in this paper is doubly nested loops with linearly coupled subscripts and
both lower and upper bounds for loop variables should be known at compile time. The loop model has
the form in Figure 2.

do i = l1, u1
do j = l2, u2

A(a11i + b11j + c11, a12i + b12j + c12) = ...
... = A(a21i + b21j + c21, a22i + b22j + c22)

enddo
enddo

Figure 2. A doubly nested loop model.

The dependence distance function d(i1, j1) in flow dependence loops gives the dependence distances
di(i1, j1) and dj(i1, j1) in dimensions i and j, respectively. For uniform dependence vector sets these
distances are constant. But, for the irregular dependence sets these distances are linear functions of the
loop indices. We can write these dependence distance functions in a general form as

d(i1, j1) = (di(i1, j1), dj(i1, j1)) (1)
di(i1, j1) = p1*i1 + q1*j1 + r1
dj(i1, j1) = p2*i1 + q2*j1 + r2

where pi, qi, and ri are real values and i1 and j1 are integer variables of the iteration space. do i = l1, u1

do j = l2, u2

A(a11i + b11j + c11, a12i + b12j + c12) = ...
... = A(a21i + b21j + c21, a22i + b22j + c22)

enddo
enddo

Figure 2.  A doubly nested loop model.

j

i

ⓐ

ⓔ

ⓓ

ⓒ

ⓑ

j

i

ⓐ

ⓔ

ⓓ

ⓒ

ⓑ

Figure 3.  Possible flow dependence directions.

Sam-Jin Jeong

Indian Journal of Science and Technology 3Vol 8 (13) | July 2015 | www.indjst.org

loop. The method uses more information from the loop
such as increment factors, and the difference between the
distance of dependence, and that of the next dependence.

The minimum dependence distance Tiling method6
presents an algorithm to convert the extreme points with
real coordinates to the extreme points with integer coor-
dinates. The method obtains an IDCH from a DCH. It
can compute dimin, the minimum value of the dependence
distance function di(i1, j1) and djmin, the minimum value
of the dependence distance function dj(i1, j1) from the
extreme points of the IDCH. The first minimum depen-
dence distances dimin and djmin are used to determine the
uniform tile size in the iteration space.

We will show cases that can tile the iteration space by
real value pi, qi and ri of equation (1) as follows.

Case 1: When p1 > 0 and q1 ≥ 0
In this case, we know that the difference between the

distance of dependence and that of the next dependence
in loop with flow dependence, dinc, is equal to or greater
than zero.

For each i1, dimin is incremented as the value of i1 is
incremented. So, the second dimin is equal to or greater
than the first one, and the third one is greater than the
second one, and so on.

The improved splitting method for doubly nested
loops with irregular and flow dependence is described as
Procedure Splitting_Method. The Procedure Splitting_
Method shows the transformation of doubly nested loops
satisfying the case that there is only flow dependence in
the loop and p1 > 0 and q1 ≥ 0. This algorithm computes
the incrementing minimum dependence distance, tiles
the iteration space efficiently according to the increment-
ing minimum dependence distance, and transforms it
into parallel loops.

By the minimum dependence distance Tiling [Pun96],
we can get the first source point, (i1, j1), which is one among
the extreme points of the IDCH. From DCH1, we also
get the dependence distance function di(i1, j1). Given the
first source point (i1, j1), the dependence distance func-
tion di(i1, j1), and both lower and upper boundaries for
loop variables, we can start Procedure Splitting_Method
as follows.

In step 1 of the Procedure Splitting_Method, the first
minimum dependence distance dimin (= p1

*i1 + q1
*j1 + r1)

is computed. Because dimin is real value in doubly nested
loop with irregular dependences, dimin(= Dist1) is used as
the minimum dependence distance. Next, St2 and Tg2,

c i > j > 0,
d i > 0 and j = 0,
e i > 0 and j < 0

Cases a ~ d are flow dependence directions that
show loop interchanging is possible. In case e , loop
interchanging is possible for nested loops with uniform
dependences, but is impossible for nested loops with
irregular dependences. In case i < j, such as in cases a
and b , loop parallelization can be improved by loop
interchanging.

The properties and theorems for splitting of nested
loops with flow dependence can be described as follows.

Theorem 1: If there is only flow dependence in the loop,
DCH1 contains flow dependence tails and DCH2 contains
flow dependence heads.

Theorem 2: If there is only flow dependence in the loop, then
di(x, y) = 0 or dj(x, y) = 0 does not pass through any DCH.

If there exists only flow dependence in the loop, then
di(x1, y1) = 0 or dj(x1, y1) = 0 does not pass through any
IDCH (Integer Dependence Convex Hull) because the
IDCH is a subspace of DCH (Dependence Convex Hull)5.

Theorem 3: If there is only flow dependence in the loop, the
minimum and maximum values of the dependence distance
function d(x1, y1) appear on the extreme points.

Theorem 4: If there is only flow dependence in the loop,
the minimum dependence distance value dimin is equal or
greater than zero.

From theorem 4, we know that when there is only flow
dependence in the loop and dimin is zero, djmin is greater
than zero. In this case, since dj(x1, y1) = 0 does not pass
through the IDCH, the minimum value of dj(x1, y1), djmin,
occurs at one of the extreme points.

Theorem 5: If there is only flow dependence in the loop, the
difference between the distance of a dependence and that of
the next dependence, dinc, is equal to or greater than zero.

Thus, dinc is equal to or greater than zero when there is
only flow dependence in the loop.

3. � Loop Spitting and
Transformation for Flow
Dependence

Cho and Lee2 present a more general and powerful loop
splitting method to enhance all parallelism on a single

A Loop Splitting Method of Irregular and Flow Dependence Loops

Indian Journal of Science and Technology4 Vol 8 (13) | July 2015 | www.indjst.org

i and j values for the target of the first dependence in the
first tile, are computed. From loop in Figure 2, a general
equation that computes the j2 value for the target of the
first iteration is as follows.

If (b21 == 0) then j2 = (a12
*i1 + b12

*j1 + c12 - a22
*i2 - c22) / 	

 b22;
Else j2 = (a11

*i1 + b11
*j1 + c11 – a21

*i2 – c21) / b21

If i or j value for the target of the first minimum
dependence is equal to or greater than the upper bounds
of the outer loop or the inner loop, respectively, then
GOTO step 4. Otherwise, GOTO step 3.

In step 2, the minimum dependence distance in the
nth tile (= Distn) is computed. The i value of the target
for the first iteration in each tile, Srn + Distn, is selected
as the first iteration in the next tile, Stn+1. And j value for
the target of the first dependence in the nth tile, Tgn+1,
is computed by value b21. If Stn+1 or Tgn+1 is equal to or
greater than the upper bounds of outer loop or inner loop,
respectively, then GOTO step 4.

In step 3, i value, Srn+1, for the source of the first
dependence in the next tile is obtained. The value q, differ-
ence between i value for the source of the first dependence
and i value for the first iteration in the same tile, will be
maximized parallelism from a loop.

In step 4, the original loop is transformed into n
parallel tiles.

Case 2: When p1 > 0 and q1 < 0
Case 3: When p1 = 0 and q1 > 0
Case 4: When p1 = 0 and q1 = 0
In case 2 ~ 4, we can group the iterations among the

dimension i into tiles of width of the first dimin. Each tile is
fully parallel, and tiles are executed in serial. In all cases,
if djmin > dimin, the outer loop i and the inner loop j can be
interchanged for maximizing the size of the tile.

Figure 4(a) shows CDCH (Complete Dependence
Convex Hull) of Example 3. As the example, we can obtain
the following results using the improved splitting method
proposed in this section.

From the algorithm to compute a two-dimensional
IDCH in 5, we can obtain the extreme points such as (1,
1), (1, 10), and (5, 1) for DCH1, and the extreme points
such as (1, 3), (10, 4), and (10, 2) for DCH2 as shown in
Figure 4(a). The first minimum value of di(i1, j1) occurs at
one of the extreme points. The i value for the source of the
first dependence in the second tile is 3. The i value in the
third tile is 7. Then, we can divide the iteration space by
three tiles as shown in Figure 4(b).

4.  Performance Analysis
This section discusses the performance analysis of our
proposed methods through the comparisons with related
works theoretically. Theoretical speedup for perfor-
mance analysis can be computed as follows. Ignoring the
synchronization, scheduling and variable renaming over-
heads, and assuming an unlimited number of processors,
each partition can be executed in one time step. Hence,
the total time of execution is equal to the number of par-
allel regions, Np, plus the number of sequential iterations,
Ns. Generally, speedup is represented by the ratio of total
sequential execution time to the execution time on

 5

In step 3, i value, Srn+1, for the source of the first dependence in the next tile is obtained. The value
q, difference between i value for the source of the first dependence and i value for the first iteration in
the same tile, will be maximized parallelism from a loop.

In step 4, the original loop is transformed into n parallel tiles.

Case 2: When p1 > 0 and q1 < 0
Case 3: When p1 = 0 and q1 > 0
Case 4: When p1 = 0 and q1 = 0

In case 2 ~ 4, we can group the iterations among the dimension i into tiles of width of the first dimin.

Each tile is fully parallel, and tiles are executed in serial. In all cases, if djmin > dimin, the outer loop i
and the inner loop j can be interchanged for maximizing the size of the tile.

Figure 4(a) shows CDCH (Complete Dependence Convex Hull) of Example 3. As the example, we
can obtain the following results using the improved splitting method proposed in this section.
From the algorithm to compute a two-dimensional IDCH in 5, we can obtain the extreme points such
as (1, 1), (1, 10), and (5, 1) for DCH1, and the extreme points such as (1, 3), (10, 4), and (10, 2) for
DCH2 as shown in Figure 4(a). The first minimum value of di(i1, j1) occurs at one of the extreme
points. The i value for the source of the first dependence in the second tile is 3. The i value in the third
tile is 7. Then, we can divide the iteration space by three tiles as shown in Figure 4(b).

 (a) (b)

Figure 4. (a) CDCH, (b) The improved splitting method in Example 3.

4. Performance Analysis
This section discusses the performance analysis of our proposed methods through the comparisons
with related works theoretically. Theoretical speedup for performance analysis can be computed as follows.
Ignoring the synchronization, scheduling and variable renaming overheads, and assuming an unlimited number
of processors, each partition can be executed in one time step. Hence, the total time of execution is equal to the
number of parallel regions, Np, plus the number of sequential iterations, Ns. Generally, speedup is represented by
the ratio of total sequential execution time to the execution time on parallel computer system as follows:

Speedup = (Ni * Nj)/(Np + Ns)
where Ni, Nj are the size of loop i, j, respectively

We will compare our proposed methods with the minimum dependence distance tiling method and the
unique set oriented partitioning method as follows:

 5

In step 3, i value, Srn+1, for the source of the first dependence in the next tile is obtained. The value
q, difference between i value for the source of the first dependence and i value for the first iteration in
the same tile, will be maximized parallelism from a loop.

In step 4, the original loop is transformed into n parallel tiles.

Case 2: When p1 > 0 and q1 < 0
Case 3: When p1 = 0 and q1 > 0
Case 4: When p1 = 0 and q1 = 0

In case 2 ~ 4, we can group the iterations among the dimension i into tiles of width of the first dimin.

Each tile is fully parallel, and tiles are executed in serial. In all cases, if djmin > dimin, the outer loop i
and the inner loop j can be interchanged for maximizing the size of the tile.

Figure 4(a) shows CDCH (Complete Dependence Convex Hull) of Example 3. As the example, we
can obtain the following results using the improved splitting method proposed in this section.
From the algorithm to compute a two-dimensional IDCH in 5, we can obtain the extreme points such
as (1, 1), (1, 10), and (5, 1) for DCH1, and the extreme points such as (1, 3), (10, 4), and (10, 2) for
DCH2 as shown in Figure 4(a). The first minimum value of di(i1, j1) occurs at one of the extreme
points. The i value for the source of the first dependence in the second tile is 3. The i value in the third
tile is 7. Then, we can divide the iteration space by three tiles as shown in Figure 4(b).

 (a) (b)

Figure 4. (a) CDCH, (b) The improved splitting method in Example 3.

4. Performance Analysis
This section discusses the performance analysis of our proposed methods through the comparisons
with related works theoretically. Theoretical speedup for performance analysis can be computed as follows.
Ignoring the synchronization, scheduling and variable renaming overheads, and assuming an unlimited number
of processors, each partition can be executed in one time step. Hence, the total time of execution is equal to the
number of parallel regions, Np, plus the number of sequential iterations, Ns. Generally, speedup is represented by
the ratio of total sequential execution time to the execution time on parallel computer system as follows:

Speedup = (Ni * Nj)/(Np + Ns)
where Ni, Nj are the size of loop i, j, respectively

We will compare our proposed methods with the minimum dependence distance tiling method and the
unique set oriented partitioning method as follows:

Figure 4.  (a) CDCH, (b) The improved splitting method
in Example 3.

Sam-Jin Jeong

Indian Journal of Science and Technology 5Vol 8 (13) | July 2015 | www.indjst.org

parallel computer system as follows:
Speedup = (Ni * Nj)/(Np + Ns)

where Ni, Nj are the size of loop i, j, respectively
We will compare our proposed methods with the

minimum dependence distance tiling method and the
unique set oriented partitioning method as follows:

Let’s consider the loop shown in Example 3. Figure
4(a) shows original partitioning of Example 3. This
example is the case that there is only flow dependence
and DCH1 overlaps DCH2. Applying the unique set ori-
ented partitioning to this loop illustrates case 2 of 4. This
method can divide the iteration space into three regions:
three parallel regions, AREA1 and AREA2, and one serial
region, AREA3, as shown in Figure 5. The speedup for
this method is (10*10)/(2+4) = 16.6.

Applying the minimum dependence distance tiling
method to this loop illustrates case 1 of this technique5,
which is the case that line di(i, j) = 0 does not pass through
the IDCH. The minimum value of di(i, j), dimin, occurs at
the extreme point (1, 1) and dimin = 2. The space can be
tiled with width = 2, thus 5 tiles are obtained. The speedup
for this method is (10*10)/5 =20.

Let’s apply our proposed method - the improved
splitting method as given in section 3. This loop is tiled by
three areas as shown in Figure 4(b). The iterations within
each area can be fully executed in parallel. So, the speedup
for this method is (10*10)/3 = 33.3.

5.  Conclusion
In this paper, we have studied the problem of transforming
nested loops with irregular and flow dependences to

maximize parallelism. Several methods are proposed in
order to parallelize loops with non-uniform dependence.
These techniques do a good job for some particular
types of loops, but most such techniques perform some
other types of loops poorly due to irregular and complex
dependence constraints.

When there is only flow dependence in the loop, we
propose the improved splitting method. The minimum
dependence distance tiling method tiles the iteration
space by the first minimum dependence distance uni-
formly. Our proposed method, however, tiles the iteration
space by minimum dependence distance values that are
incremented as the value of i1 is incremented.

In comparison with some previous partitioning
methods, the improved splitting method gives much bet-
ter speedup than the minimum dependence distance tiling
method and the unique set oriented partitioning method
in the case that there is irregular and flow dependence. Our
future research work is to develop a method for improving
parallelization of higher dimensional nested loops.

6. Acknowledgement
This research is supported by 2015 Baekseok University
Research fund.

7.  References
1.	 Banerjee U. Loop Transformations for Restructuring

Compilers: The Foundations. Norwell, Massachusetts:
Kluwer Academic Publishers; 1993.

2.	 Cho CK, Shim JC, Lee MH. A loop transformation for
maximizing parallelism from single loops with non-uni-
form dependences. Proceedings of High Performance
Computing Asia ‘97; 1997. p. 696–9.

3.	 Cho CK, Lee MH. A loop parallization method for nested
loops with non-uniform dependences. Proceedings of
the International Conference on Parallel and Distributed
Systems; 1997; p. 314–21.

4.	 Ju J, Chaudhary V. Unique sets oriented partitioning of
nested loops with non-uniform dependences. Proceedings
of International Conference on Parallel Processing; 1996.
p. 45–52.

5.	 Punyamurtula S, Chaudhary V. Minimum dependence
distance tiling of nested loops with non-uniform depen-
dences. Proceedings of Symposium on Parallel and
Distributed Processing; 1994. p. 74–81.

6.	 Punyamurtula S, Chaudhary V, Ju J, Roy S. Compile
time partitioning of nested loop iteration spaces with

Figure 5.  Regions of the loop partitioned by the unique
sets oriented partitioning in Example 3.

A Loop Splitting Method of Irregular and Flow Dependence Loops

Indian Journal of Science and Technology6 Vol 8 (13) | July 2015 | www.indjst.org

8.	 Zaafrani AA, Ito MR. Parallel region execution of
loops with irregular dependences. Proceedings of
the International Conference on Parallel Processing;
1994. p. 11–9.

non-uniform dependences. Journal of Parallel Algorithms
and Applications. 1996.

7.	 Tzen T, Ni L. Dependence uniformization: A loop
parallelization technique. IEEE Transactions on Parallel
and Distributed Systems. 1993; 4(5):547–58.

