
Abstract
A lot of work has been done in parallelizing nested loops with uniform dependences, from dependence analysis to loop 
transformation. Loops with non-uniform dependences are not so uncommon in the real world. This paper proposes an 
­efficient method of splitting and transforming nested loops with irregular and flow dependences for maximizing ­parallelism. 
Our approach is based on the Convex Hull theory that has adequate information to handle irregular ­dependences, and 
also based on minimum dependence distance tiling methods. We will first show how to find the incrementing minimum 
­dependence distance. Next, we will propose how to tile the iteration space efficiently according to the incrementing ­minimum 
dependence distance. Finally, we will show how to achieve more parallelism by loop interchanging and how to transform it 
into parallel loops. Comparison with some other methods shows more parallelism than other existing ­methods.
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1.  Introduction

Automatic transformation of a sequential program into a 
parallel form is a subject that presents a great intellectual 
challenge, and at the same time promises a large practical 
reward. On one hand, there is a tremendous investment 
in existing sequential programs that we would like to run 
with ever increasing speed. On the other hand, scientist 
and engineers continue to write their application pro-
grams in sequential languages, and keep demanding 
higher and higher speedups. Over a period of several 
decades, much research has been done on using restruc-
turing compilers to enable the parallel execution of 
sequential programs1.

Example l.		  Example 2.
do i = 1, 10		  do i = 1, 10

do j = 1, 10	 do j = 1, 10
A(i+1, j) = . . .	 A(2*i+3, j+1) = . . .
. . .  = A(i, j-1)	 . . .  = A(2*j+i+1, i+j+3)

enddo		  enddo
enddo		 enddo

Example 3.
do i = 1, 10

do j = 1, 10
A(2*i+ j+1, i+j+3) = . . .

. . .= A(i+4, 2*j+3)
enddo

enddo
According to an empirical study2, nearly 66% of the 

array references have linear or partially linear subscript 
expressions and 45% of two dimensional array refer-
ences are coupled and most of these lead to irregular 
dependences. 

Example 1 is loop with uniform dependences. The 
dependence vector of Example 1 is (1, 1) as shown in 
Figure 1(a). In the same fashion, we call some depen-
dences non-uniform when dependence vectors are in 
irregular and complex patterns that cannot be expressed 
by distance vector. Figure 1(b) shows the dependence pat-
terns of Example 2 in the iteration space. An example given 
in Example 3 illustrates the case that there is irregular 
and flow dependence. Figure 1(c) shows the dependence 
patterns of Example 3. 
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This paper will focus on parallelizing perfectly nested 
loops with irregular and flow dependences.

2. � Data Dependence Analysis 
in Irregular and Flow 
Dependence Loop

The loop model considered in this paper is doubly 
nested loops in Figure 2, where f1(I, J), f2(I, J), f3(I, J), and  
f4(I, J) are linear functions of loop variables. Both lower 
and upper bounds for loop variables should be known at 
compile time.

The loop carries cross iteration dependences if and 
only if there exist four integers (i1,j1,i2,j2) satisfying the sys-
tem of linear diophantine equations given by (1) and the 
system of inequalities given by (2). The general solution to 
these equations can be computed by the extended GCD8 
and forms a DCH.

The loop model considered in this paper is doubly 
nested loops with linearly coupled subscripts and both 
lower and upper bounds for loop variables should be 
known at compile time. The loop model has the form in 
Figure 2.

The dependence distance function d(i1, j1) in flow 
dependence loops gives the dependence distances  
di(i1, j1) and dj(i1, j1) in dimensions i and j, respectively. For 
uniform dependence vector sets these distances are con-
stant. But, for the irregular dependence sets these distances 

are linear functions of the loop indices. We can write these 
dependence distance functions in a general form as

d(i1, j1) = (di(i1, j1), dj(i1, j1))� (1)

	 di(i1, j1) = p1
*i1 + q1

*j1 + r1

	 dj(i1, j1) = p2
*i1 + q2

*j1 + r2

where pi, qi, and ri are real values and i1 and j1 are integer 
variables of the iteration space.

The dependence distance function d(i1, j1) can be 
represented by direction of the dependence. Figure 3 
shows all possible flow dependence directions in doubly 
nested loops. 

The dependence direction is written as d = (i, j), where 
i is the value of di(i1, j1) and j is the value of dj(i1, j1). From 
Figure 3, we know that there are possible flow dependence 
directions as follows.
a   i = 0 and j > 0,
b   0 < i < j, 

Figure 1.  Iteration spaces of (a) Example 1, (b) Example 2, (c) Example 3.
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Figure 1. Iteration spaces of (a) Example 1, (b) Example 2, (c) Example 3 

Example 1 is loop with uniform dependences. The dependence vector of Example 1 is (1, 1) as shown 
in Figure 1(a). In the same fashion, we call some dependences non-uniform when dependence vectors 
are in irregular and complex patterns that cannot be expressed by distance vector. Figure 1(b) shows 
the dependence patterns of Example 2 in the iteration space. An example given in Example 3 
illustrates the case that there is irregular and flow dependence. Figure 1(c) shows the dependence 
patterns of Example 3.  
This paper will focus on parallelizing perfectly nested loops with irregular and flow dependences. 
 
2. Data Dependence Analysis in Irregular and Flow Dependence Loop 

The loop model considered in this paper is doubly nested loops in Figure 2, where f1(I, J), f2(I, J), f3(I, 
J), and f4(I, J) are linear functions of loop variables. Both lower and upper bounds for loop variables 
should be known at compile time. 
 
The loop carries cross iteration dependences if and only if there exist four integers (i1,j1,i2,j2) 
satisfying the system of linear diophantine equations given by (1) and the system of inequalities given 
by (2). The general solution to these equations can be computed by the extended GCD8 and forms a 
DCH. 
 
The loop model considered in this paper is doubly nested loops with linearly coupled subscripts and 
both lower and upper bounds for loop variables should be known at compile time. The loop model has 
the form in Figure 2. 
 

do i = l1, u1 
do j = l2, u2 

A(a11i + b11j + c11, a12i + b12j + c12) = ... 
... = A(a21i + b21j + c21, a22i + b22j + c22) 

enddo 
enddo  

Figure 2. A doubly nested loop model. 

The dependence distance function d(i1, j1) in flow dependence loops gives the dependence distances 
di(i1, j1) and dj(i1, j1) in dimensions i and j, respectively. For uniform dependence vector sets these 
distances are constant. But, for the irregular dependence sets these distances are linear functions of the 
loop indices. We can write these dependence distance functions in a general form as 
 

d(i1, j1) = (di(i1, j1), dj(i1, j1))                                     (1)
di(i1, j1) = p1*i1 + q1*j1 + r1
dj(i1, j1) = p2*i1 + q2*j1 + r2 

 
where pi, qi, and ri are real values and i1 and j1 are integer variables of the iteration space. do i = l1, u1

do j = l2, u2

A(a11i + b11j + c11, a12i + b12j + c12) = ...
... = A(a21i + b21j + c21, a22i + b22j + c22)

enddo
enddo

Figure 2.  A doubly nested loop model.
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loop. The method uses more information from the loop 
such as increment factors, and the difference between the 
distance of dependence, and that of the next dependence. 

The minimum dependence distance Tiling method6 
presents an algorithm to convert the extreme points with 
real coordinates to the extreme points with integer coor-
dinates. The method obtains an IDCH from a DCH. It 
can compute dimin, the minimum value of the dependence 
distance function di(i1, j1) and djmin, the minimum value 
of the dependence distance function dj(i1, j1) from the 
extreme points of the IDCH. The first minimum depen-
dence distances dimin and djmin are used to determine the 
uniform tile size in the iteration space. 

We will show cases that can tile the iteration space by 
real value pi, qi and ri of equation (1) as follows.

Case 1: When p1 > 0 and q1 ≥ 0
In this case, we know that the difference between the 

distance of dependence and that of the next dependence 
in loop with flow dependence, dinc, is equal to or greater 
than zero. 

For each i1, dimin is incremented as the value of i1 is 
incremented. So, the second dimin is equal to or greater 
than the first one, and the third one is greater than the 
second one, and so on.

The improved splitting method for doubly nested 
loops with irregular and flow dependence is described as 
Procedure Splitting_Method. The Procedure Splitting_
Method shows the transformation of doubly nested loops 
satisfying the case that there is only flow dependence in 
the loop and p1 > 0 and q1 ≥ 0. This algorithm computes 
the incrementing minimum dependence distance, tiles 
the iteration space efficiently according to the increment-
ing minimum dependence distance, and transforms it 
into parallel loops.

By the minimum dependence distance Tiling [Pun96], 
we can get the first source point, (i1, j1), which is one among 
the extreme points of the IDCH. From DCH1, we also 
get the dependence distance function di(i1, j1). Given the 
first source point (i1, j1), the dependence distance func-
tion di(i1, j1), and both lower and upper boundaries for 
loop variables, we can start Procedure Splitting_Method 
as follows.

In step 1 of the Procedure Splitting_Method, the first 
minimum dependence distance dimin (= p1

*i1 + q1
*j1 + r1) 

is computed. Because dimin is real value in doubly nested 
loop with irregular dependences, dimin(= Dist1) is used as 
the minimum dependence distance. Next, St2 and Tg2, 

c  i > j > 0, 
d  i > 0 and j = 0, 
e  i > 0 and j < 0

Cases a  ~ d  are flow dependence directions that 
show loop interchanging is possible. In case e , loop 
interchanging is possible for nested loops with uniform 
dependences, but is impossible for nested loops with 
irregular dependences. In case i < j, such as in cases a  
and b , loop parallelization can be improved by loop 
interchanging.

The properties and theorems for splitting of nested 
loops with flow dependence can be described as follows.

Theorem 1: If there is only flow dependence in the loop, 
DCH1 contains flow dependence tails and DCH2 contains 
flow dependence heads.

Theorem 2: If there is only flow dependence in the loop, then 
di(x, y) = 0 or dj(x, y) = 0 does not pass through any DCH.

If there exists only flow dependence in the loop, then 
di(x1, y1) = 0 or dj(x1, y1) = 0 does not pass through any 
IDCH (Integer Dependence Convex Hull) because the 
IDCH is a subspace of DCH (Dependence Convex Hull)5.

Theorem 3: If there is only flow dependence in the loop, the 
minimum and maximum values of the dependence distance 
function d(x1, y1) appear on the extreme points.

Theorem 4: If there is only flow dependence in the loop, 
the minimum dependence distance value dimin is equal or 
greater than zero.

From theorem 4, we know that when there is only flow 
dependence in the loop and dimin is zero, djmin is greater 
than zero. In this case, since dj(x1, y1) = 0 does not pass 
through the IDCH, the minimum value of dj(x1, y1), djmin, 
occurs at one of the extreme points. 

Theorem 5: If there is only flow dependence in the loop, the 
difference between the distance of a dependence and that of 
the next dependence, dinc, is equal to or greater than zero.

Thus, dinc is equal to or greater than zero when there is 
only flow dependence in the loop.

3. � Loop Spitting and 
Transformation for Flow 
Dependence

Cho and Lee2 present a more general and powerful loop 
splitting method to enhance all parallelism on a single 
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i and j values for the target of the first dependence in the 
first tile, are computed. From loop in Figure 2, a general 
equation that computes the j2 value for the target of the 
first iteration is as follows.

If (b21 == 0) then j2 = (a12
*i1 + b12

*j1 + c12 - a22
*i2 - c22) / 	

          b22;
Else j2 = (a11

*i1 + b11
*j1 + c11 – a21

*i2 – c21) / b21

If i or j value for the target of the first minimum 
dependence is equal to or greater than the upper bounds 
of the outer loop or the inner loop, respectively, then 
GOTO step 4. Otherwise, GOTO step 3.

In step 2, the minimum dependence distance in the 
nth tile (= Distn) is computed. The i value of the target 
for the first iteration in each tile, Srn + Distn, is selected 
as the first iteration in the next tile, Stn+1. And j value for 
the target of the first dependence in the nth tile, Tgn+1, 
is computed by value b21. If Stn+1 or Tgn+1 is equal to or 
greater than the upper bounds of outer loop or inner loop, 
respectively, then GOTO step 4. 

In step 3, i value, Srn+1, for the source of the first 
dependence in the next tile is obtained. The value q, differ-
ence between i value for the source of the first dependence 
and i value for the first iteration in the same tile, will be 
maximized parallelism from a loop. 

In step 4, the original loop is transformed into n 
parallel tiles.

Case 2: When p1 > 0 and q1 < 0
Case 3: When p1 = 0 and q1 > 0
Case 4: When p1 = 0 and q1 = 0
In case 2 ~ 4, we can group the iterations among the 

dimension i into tiles of width of the first dimin. Each tile is 
fully parallel, and tiles are executed in serial. In all cases, 
if djmin > dimin, the outer loop i and the inner loop j can be 
interchanged for maximizing the size of the tile.

Figure 4(a) shows CDCH (Complete Dependence 
Convex Hull) of Example 3. As the example, we can obtain 
the following results using the improved splitting method 
proposed in this section.

From the algorithm to compute a two-dimensional 
IDCH in 5, we can obtain the extreme points such as (1, 
1), (1, 10), and (5, 1) for DCH1, and the extreme points 
such as (1, 3), (10, 4), and (10, 2) for DCH2 as shown in 
Figure 4(a). The first minimum value of di(i1, j1) occurs at 
one of the extreme points. The i value for the source of the 
first dependence in the second tile is 3. The i value in the 
third tile is 7. Then, we can divide the iteration space by 
three tiles as shown in Figure 4(b).

4.  Performance Analysis
This section discusses the performance analysis of our 
proposed methods through the comparisons with related 
works theoretically. Theoretical speedup for perfor-
mance analysis can be computed as follows. Ignoring the 
synchronization, scheduling and variable renaming over-
heads, and assuming an unlimited number of processors, 
each partition can be executed in one time step. Hence, 
the total time of execution is equal to the number of par-
allel regions, Np, plus the number of sequential iterations, 
Ns. Generally, speedup is represented by the ratio of total 
sequential execution time to the execution time on 
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Figure 4. (a) CDCH, (b) The improved splitting method in Example 3. 
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parallel computer system as follows:
Speedup = (Ni * Nj)/(Np + Ns)

where Ni, Nj are the size of loop i, j, respectively
We will compare our proposed methods with the 

minimum dependence distance tiling method and the 
unique set oriented partitioning method as follows:

Let’s consider the loop shown in Example 3. Figure 
4(a) shows original partitioning of Example 3. This 
example is the case that there is only flow dependence 
and DCH1 overlaps DCH2. Applying the unique set ori-
ented partitioning to this loop illustrates case 2 of 4. This 
method can divide the iteration space into three regions: 
three parallel regions, AREA1 and AREA2, and one serial 
region, AREA3, as shown in Figure 5. The speedup for 
this method is (10*10)/(2+4) = 16.6.

Applying the minimum dependence distance tiling 
method to this loop illustrates case 1 of this technique5, 
which is the case that line di(i, j) = 0 does not pass through 
the IDCH. The minimum value of di(i, j), dimin, occurs at 
the extreme point (1, 1) and dimin = 2. The space can be 
tiled with width = 2, thus 5 tiles are obtained. The speedup 
for this method is (10*10)/5 =20.

Let’s apply our proposed method - the improved 
splitting method as given in section 3. This loop is tiled by 
three areas as shown in Figure 4(b). The iterations within 
each area can be fully executed in parallel. So, the speedup 
for this method is (10*10)/3 = 33.3. 

5.  Conclusion
In this paper, we have studied the problem of transforming 
nested loops with irregular and flow dependences to 

maximize parallelism. Several methods are proposed in 
order to parallelize loops with non-uniform dependence. 
These techniques do a good job for some particular 
types of loops, but most such techniques perform some 
other types of loops poorly due to irregular and complex 
dependence constraints. 

When there is only flow dependence in the loop, we 
propose the improved splitting method. The minimum 
dependence distance tiling method tiles the iteration 
space by the first minimum dependence distance uni-
formly. Our proposed method, however, tiles the iteration 
space by minimum dependence distance values that are 
incremented as the value of i1 is incremented. 

In comparison with some previous partitioning 
methods, the improved splitting method gives much bet-
ter speedup than the minimum dependence distance tiling 
method and the unique set oriented partitioning method 
in the case that there is irregular and flow dependence. Our 
future research work is to develop a method for improving 
parallelization of higher dimensional nested loops.
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