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Abstract
Background/Objectives: To formulate and analyze a vector host epidemic model with non-monotonic and bilinear 
incidences. Methods/Statistical Analysis: The stability conditions of disease free equilibrium and endemic equilibrium 
are investigated by constructing suitable Lyapunov functions. Numerical simulation is carried out to justify the theoretical 
results. Results/Findings: The disease becomes endemic when the basic reproduction number is greater than one and 
it fades out when it is less than one. Conclusion/Application: In endemic state of the disease, number of infective host 
decreases as awareness of vaccination and preventive measures increases and number of vectors approaches zero as the 
awareness of use of insecticides and cleanliness tends to infinity.
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1.   Introduction

Vectors become the main mediators of infectious diseases 
to the host population1. Awareness about preventive mea-
sures to reduce vector-host contacts2 and the insecticide 
control of the vector helps to eradicate the disease. Infec-
tious diseases have major social and economical impact 
in the population. Mathematical models on epidemiology 
provide significant insight into population behavior and 
control. They play an important role in understanding the 
dynamics of the diseases and to make the public health 
policies for controlling disease3. 

Our aim is to develop a vector born disease model with 
non-monotonic incidence rate and bilinear incidence 
rate4 which describes the effect of social awareness on epi-
demics. In section 2, we formulate a system of differential 
equations which represent the vector host epidemiolog-
ical model with non-monotonic rate and bilinear inci-
dence rate and compute the basic reproduction number. 
We also obtain the disease free equilibrium and endemic 
equilibrium for the model and analyze the stability condi-
tions for these equilibriums in section 3. In section 4, we 
show the outcomes using numerical simulation.

2.   Model Formulation

Let S(t) be the number of susceptible individuals, I(t) be the 
number of infective individuals, and R(t) be the number of 
recovered individuals in host population at time t such that 
N1(t) = S(t) + I(t) + R(t). We take α1 is the recruitment rate 
of host population, λ1 is the transmission rate from vector 
to host, β1 is natural death rate of host population, γ is per 
capita recovery rate of host, a is the parameter which mea-
sures the effect of awareness of vaccination and preventive 
measures among the host population and b is the parameter 
which measures the effect of cleanliness and use of insec-
ticide for vector control. We have chosen the parameter a 
so that 1 02+ +aV bV >  for all V ≥ 0 and the parameter b 
be positive. Let M (t) be the number of susceptible vectors 
and V (t) is the number of infective vectors at time t such 
that N2 (t) = M (t) + V (t). We take α2 is the recruitment rate 
of vector population, β2 is the natural death rate of vector 
population and λ2 is the transmission rate from host to vector.

Hence, our vector host epidemiological model with 
non-monotonic incidence rate for hosts and the bilinear 
incidence rate for vectors is represented by a system of 
differential equations as follows: 
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We need non-negative solutions for biological reasons. 
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The endemic equilibrium E*(S*, I*, V*) is given by the fol-
lowing equations
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3.   Stability Analysis

In this section, we derive the stability conditions for the 
disease-free and the endemic equilibrium of model (2.2). 

3.1  Theorem
If R0 < 1 then the disease free equilibrium E0 is locally 
asymptotically stable and it is unstable for R0 > 1. 
Proof: For the disease free equilibrium E0, we obtain the 
Jacobian matrix as:
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Characteristic equation of this matrix is given by
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which is negative. Another two roots are determined by the 
equation 
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By Routh - Hurwitz criterion5,6, we have that if R0 < 1 then 
above equation has both the roots with negative real part 
and if R0 > 1 then it has one of the root with negative real 
part and another with positive real part. Thus, we obtain 
that all the Eigen values of the above characteristic equa-
tion have negative real part for R0 < 1 and hence local 
asymptotically stability of the disease free equilibrium E0 
is established. When R0 > 1, two of the Eigen values are 
negative and one is positive and so E0 is unstable in this 
case. Hence the theorem follows.

3.2  Theorem
The disease free equilibrium E0 is globally asymptotically 
stable for R0 ≤ 1and if R0 > 1then it is unstable.
Proof: We consider the function L1 as follows,
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Since at all t ≥ 0, if R0 ≤ 1 then dL
dt

1
 ≤ 0, the function L1 

is a Lyapunov function. Also, at the disease free equilibrium 
i.e. at E0 ( , , )α

β
1
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1 0= . Thus, {E0} is the 

largest invariant set in the closed set Γ. Therefore, E0 is 
globally stable using LaSalle’s invariance principle7.

We now investigate the local stability of endemic 
equilibrium and derive the global stability of endemic 
equilibrium in the feasible region Γ by proving uniform 
persistence of the system (2.2). We also apply theory of 
second compound equations to show asymptotic orbital 
stability of periodic solutions. 

3.3  Theorem
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asymptotically stable if R0 > 1.
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We have, tr J(E*), det J(E*) and det J2 (E*) all negative. 
Hence, all Eigen values of J(E*) have negative real part8,9. 
Hence the theorem.
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3.4  Theorem
If R0 > 1, then system (2.2) is uniformly persistent, that is, 
there exists  > 0 (independent of initial conditions), such that 
lim inft→∞S(t) >  , lim inft→∞I(t) >  and lim inft→∞V(t) > .
Proof: To prove this, we show the following results: 

•	 For system (2.2), E0 is only one omega-limit point 
on the boundary of Γ. 

•	 For R0 > 1, E0 cannot be the omega-limit point of any 
orbit in Int Γ.
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except in the S-axis, which is invariant for the system 
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L2 is increasing along the orbits starting in ∪∩ IntΓ, 

all solutions of system (2.2) move away from E0.                                                  
***

3.5  Theorem
When R0 > 1, the endemic equilibrium E* is globally 
asymptotically stable.
Proof: The system (2.2) is uniformly persistent, and E* is 
locally asymptotically stable for R0 > 1. To prove this the-
orem, we prove that the system (2.2) has the property of 
stability of periodic orbits10. 
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To prove that system (3.5) is asymptotically stable, we 
consider the following function
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From theorem (3.4), we obtain that the orbit of P(t) 
remains at a positive distance from the boundary of Γ. 
There exists constant c > 0 such that
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Rewriting the second and third equation of system (2.2) 
as follows
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g t I
I2 1( )≤ − +
′

β � (3.12)

Hence

sup g1( ), ( )t g t I
I2 1{ }≤ − +
′

β

From equation (3.10) and Gronwall’s inequality11, we 
obtain

L t L I t e L et t
3 3 3

1

1

0 01 1( ) ( ) ( ) ( )≤ − −β βα
µ

<

which implies that L3 (t)→0 as t→∞. By (3.6), we obtain 

W W1 3( ), ( ), ( ) .t W t t as t2 0( )→ →∞

Hence the linear system (3.5) is asymptotically stable 
and hence the periodic solution is asymptotically orbitally 
stable. Therefore, the endemic equilibrium E* is globally 
asymptotically stable8,9.

4.   Numerical Analysis

We present the numerical simulation using MATLAB, to 
validate the theoretical results. Figure 1 shows that the 
disease free equilibrium exists for R0 < 1. Figure 2 indi-
cates that disease becomes endemic for R0 > 1. As the 
parameters a and b increase, number of infective individ-
uals decreases. This is shown in Figure 3 and Figure 4, 
respectively.

Figure 1.  Here S(0) = 400, I(0) = 100, V(0) = 300, k = 1.1, 
α1 = 11, α2 = 100, λ1 = 0.007, λ2 = 0.009, β1 = 0.045, β 2 = 0.61, 
γ = 0.12, a = 0.02, b = 0.01, R0 = 0.401.

0 5 10 15 20 25 30 35 40 45 50 55
0

100

200

300

400

t

S ( t )

V ( t )

I ( t )

58749-118336-1-CE.indd   5 7/15/2015   3:57:29 PM



Stability Analysis of a Vector-borne Disease Model with Nonlinear and Bilinear Incidences

Vol 8 (13) | July 2015 | www.indjst.org� Indian Journal of Science and Technology6

5.   Conclusion

We have proposed a vector-host epidemiological model 
and have studied the dynamical behavior of the model. 
We established the global asymptotic stability of the 

disease free equilibrium for R0 ≤ 1 and proved that if 
R0 > 1the the disease becomes endemic. The expres-
sion (2.3) shows that R0 does not depend on a and b 
but it is clear from numerical analysis that the num-
ber of infective hosts in endemic state I* decreases as 
a and b increase. It can be found that from expression 
(2.6) that the number of infective vectors in endemic 
state V approaches zero as b tends to infinity. The 
results show that if people are aware of preventive 
measures such as vaccinations and use of bed nets etc, 
then the spread of disease can be controlled among the 
host population. Also, awareness of clean surroundings 
and use of insecticides helps to reduce the number of 
vectors and eventually eradicate the disease. 
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Figure 2.  Here S(0) = 400, I(0) = 100, V(0) = 300, k = 0.016, 
α1 = 11, α2 = 100, λ1 = 0.007, λ2 = 0.009, β1 = 0.045, β2 = 0.61, 
γ = 0.12, a = 0.02, b = 0.01, R0 = 27.59.
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Figure 3.  Dependence of I* on a.

Figure 4.  Dependence of I* on b.
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